Skip to main content
Log in

Allylation of norbornadiene in the presence of Pd0 phosphine complexes: a DFT modeling

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The formation of products of oxidative and reductive allylation of norbornadiene by allyl formate (AF) in the presence of Pd0 triphenylphosphine complexes was modeled by the PBE/L11 method in terms of the density functional theory. According to calculations of all most probable routes to the norbornadiene allylation products, the highest energy barriers correspond to the transition state of formation of the first C-C bond. Two complexes, Pd(AF)(PPh3)2 and Pd(AF)(PPh3), can be treated as catalytically active ones. The PPh3 ligands cause a 7.6–8.2 kcal mol−1 decrease in the activation barriers to the formation of the second C-C bond necessary to generate the products of oxidative allylation of norbornadiene. The formation of 5-methylene-6-vinylbicyclo[2.2.1]-hept-2-ene proceeds via opening of the cyclobutane ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Catellani, G. Chiusoli, E. Dradi, G. Salerno, J. Organomet. Chem., 1979, 177, 29; DOI: https://doi.org/10.1016/S0022-328X(00)94094-4.

    Article  Google Scholar 

  2. U. M. Dzhemilev, R. I. Khusnutdinov, G. A. Tolstikov, Russ. Chem. Rev., 1987, 56, 36; DOI: https://doi.org/10.1070/RC1987v056n01ABEH003255.

    Article  Google Scholar 

  3. U. M. Dzhemilev, R. I. Khusnutdinov, D. K. Galeev, O. M. Nefedov, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 122; DOI: https://doi.org/10.1007/BF00953861.

    Article  Google Scholar 

  4. I. P. Stolyarov, A. E. Gekhman, I. I. Moiseev, A. Yu. Kolesnikov, E. M. Evstigneeva, V. R. Flid, Russ. Chem. Bull., 2007, 56, 320; DOI: https://doi.org/10.1007/s11172-007-0052-x.

    Article  CAS  Google Scholar 

  5. R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2020, 69, 653; DOI: https://doi.org/10.1007/s11172-020-2813-8.

    Article  CAS  Google Scholar 

  6. E. M. Evstigneeva, V. R. Flid, Russ. Chem. Bull., 2008, 57, 837; DOI: https://doi.org/10.1007/s11172-008-0121-9.

    Article  CAS  Google Scholar 

  7. S. A. Durakov, R. S. Shamsiev, V. R. Flid, A. E. Gekhman, Russ. Chem. Bull., 2018, 67, 2234; DOI: https://doi.org/10.1007/s11172-018-2361-7.

    Article  CAS  Google Scholar 

  8. S. A. Durakov, R. S. Shamsiev, V. R. Flid, A. E. Gekhman, Kinet. Catal. (Engl. Transl.), 2019, 60, 245; DOI: https://doi.org/10.1134/S0023158419030042.

    Article  CAS  Google Scholar 

  9. S. A. Durakov, R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2021, 70, 1290; DOI: https://doi.org/10.1007/s11172-021-3213-4.

    Article  CAS  Google Scholar 

  10. S. A. Durakov, P. V. Melnikov, E. M. Martsinkevich, A. A. Smirnova, R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2021, 70, 113; DOI: https://doi.org/10.1007/s11172-021-3064-z.

    Article  CAS  Google Scholar 

  11. K. N. Gavrilov, I. V. Chuchelkin, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, V. M. Trunina, A. V. Maximychev, A. M. Perepukhov, Russ. Chem. Bull., 2021, 70, 336; DOI: https://doi.org/10.1007/s11172-021-3090-x.

    Article  CAS  Google Scholar 

  12. R. S. Shamsiev, K. T. Egiazaryan, V. R. Flid, Russ. Chem. Bull., 2021, 70, 316; DOI: https://doi.org/10.1007/s11172-021-3087-5.

    Article  CAS  Google Scholar 

  13. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

  14. D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, 820; DOI: https://doi.org/10.1007/s11172-005-0329-x.

    Article  CAS  Google Scholar 

  15. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  16. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116; DOI: https://doi.org/10.1016/j.cplett.2005.09.046.

    Article  CAS  Google Scholar 

  17. R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2013, 62, 2301; DOI: https://doi.org/10.1007/s11172-013-0333-5.

    Article  CAS  Google Scholar 

  18. N. S. Rukk, R. S. Shamsiev, D. V. Albov, S. N. Mudretsova, Fine Chem. Technol., 2021, 16, No. 2, 113; DOI: https://doi.org/10.32362/2410-6593-2021-16-2-113-124.

    Article  Google Scholar 

  19. K. T. Egiazaryan, R. S. Shamsiev, V. R. Flid, Fine Chem. Technol., 2019, 14, No. 6, 56; DOI: https://doi.org/10.32362/2410-6593-2019-14-6-56-65.

    Google Scholar 

  20. M. Murakami, N. Ishida, J. Am. Chem. Soc., 2016, 138, 13759; DOI: https://doi.org/10.1021/jacs.6b01656.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Shamsiev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 905–914, May, 2022.

This work was financially supported by the MIREA — Russian Technological University within the framework of a “University” grant for young scientists.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsiev, R.S., Egiazaryan, K.T. & Flid, V.R. Allylation of norbornadiene in the presence of Pd0 phosphine complexes: a DFT modeling. Russ Chem Bull 71, 905–914 (2022). https://doi.org/10.1007/s11172-022-3489-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3489-z

Key words

Navigation