Skip to main content
Log in

Synthesis and reactivity of the complexes [(dpp-bian)SiCl2] and [(dpp-bian)Si{FeCp(CO)}2(μ-CO)] (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The complex [(dpp-bian)SiCl2] (1) was synthesized by the reaction of the free 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) ligand with Si2Cl6. Despite the presence of the dpp-bian dianion, complex 1 is inert toward heteroallenes. An attempt to increase the reactivity of complex 1 by abstracting a halogen atom from [(dpp-bian)-SiCl2] by the treatment with AlCl3 led to the formation of the cationic complex [(dpp-bian)SiCl2][Al2Cl7] (2). The iron μ-silylene complex [(dpp-bian)Si{FeCp(CO)}2(μ-CO)] (4) was synthesized by the reaction of silylene [(dpp-bian)Si] (3) with 0.5 mol. equiv. of [CpFe(CO)2]2. The reaction of 4 with phenyl isothiocyanate afforded sulfide [(dpp-bian)-SiS]2 (5). The new compounds were characterized by IR (2, 4, 5), EPR (2), and multi-nuclear NMR (4) spectroscopy and by elemental analysis. The molecular structures of complexes 2, 4, and 5 were established by X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. West, Science, 1984, 225, 1109; DOI: https://doi.org/10.1126/science.225.4667.1109.

    Article  CAS  PubMed  Google Scholar 

  2. A. Sekiguchi, R. Kinjo, M. Ichinohe, Science, 2004, 305, 1755; DOI: https://doi.org/10.1126/science.1102209.

    Article  CAS  PubMed  Google Scholar 

  3. P. Jutzi, D. Kanne, C. Krüger, Angew. Chem., Int. Ed., 1986, 25, 164; DOI: https://doi.org/10.1002/anie.198601641.

    Article  Google Scholar 

  4. Y. Wang, Y. Xie, P. Wei, R. B. King, F. Schaefer Henry, R. S. P. von, H. Robinson Gregory, Science, 2008, 321, 1069; DOI: https://doi.org/10.1126/science.1160768.

    Article  CAS  PubMed  Google Scholar 

  5. K. Abersfelder, J. P. White Andrew, S. Rzepa Henry, D. Scheschkewitz, Science, 2010, 327, 564; DOI: https://doi.org/10.1126/science.1181771.

    Article  CAS  PubMed  Google Scholar 

  6. X. Sun, T. Simler, R. Yadav, R. Köppe, P. W. Roesky, J. Am. Chem. Soc., 2019, 141, 14987; DOI: https://doi.org/10.1021/jacs.9b08018.

    Article  CAS  PubMed  Google Scholar 

  7. R. Holzner, A. Porzelt, U. S. Karaca, F. Kiefer, P. Frisch, D. Wendel, M. C. Holthausen, S. Inoue, Dalton Trans., 2021, 50, 8785; DOI: https://doi.org/10.1039/D1DT01629F.

    Article  CAS  PubMed  Google Scholar 

  8. D. Wendel, T. Szilvási, D. Henschel, P. J. Altmann, C. Jandl, S. Inoue, B. Rieger, Angew. Chem., Int. Ed., 2018, 57, 14575; DOI: https://doi.org/10.1002/anie.201804472.

    Article  CAS  Google Scholar 

  9. N. Tokitoh, H. Suzuki, R. Okazaki, K. Ogawa, J. Am. Chem. Soc., 1993, 115, 10428; DOI: https://doi.org/10.1021/ja00075a096.

    Article  CAS  Google Scholar 

  10. K. Suzuki, T. Matsuo, D. Hashizume, K. Tamao, J. Am. Chem. Soc., 2011, 133, 19710; DOI: https://doi.org/10.1021/ja209736d.

    Article  CAS  PubMed  Google Scholar 

  11. L. Wang, Y. Li, Z. Li, M. Kira, Coord. Chem. Rev., 2022, 457, 214413; DOI: https://doi.org/10.1016/j.ccr.2022.214413.

    Article  CAS  Google Scholar 

  12. F. M. Mück, J. A. Baus, M. Nutz, C. Burschka, J. Poater, F. M. Bickelhaupt, R. Tacke, Chem. Eur. J., 2015, 21, 16665; DOI: https://doi.org/10.1002/chem.201501788.

    Article  PubMed  Google Scholar 

  13. K. Junold, M. Nutz, A. Baus Johannes, C. Burschka, C. Fonseca Guerra, F. M. Bickelhaupt, R. Tacke, Chem. Eur. J., 2014, 20, 9319; DOI: https://doi.org/10.1002/chem.201402483.

    Article  CAS  PubMed  Google Scholar 

  14. P. Jutzi, A. Möhrke, Angew. Chem., Int. Ed., 1989, 28, 762; DOI: https://doi.org/10.1002/anie.198907621.

    Article  Google Scholar 

  15. S. S. Sen, H. W. Roesky, D. Stern, J. Henn, D. Stalke, J. Am. Chem. Soc., 2010, 132, 1123; DOI: https://doi.org/10.1021/ja9091374.

    Article  CAS  PubMed  Google Scholar 

  16. A. V. Protchenko, A. D. Schwarz, M. P. Blake, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, Angew. Chem., Int. Ed., 2013, 52, 568; DOI: https://doi.org/10.1002/anie.201208554.

    Article  CAS  Google Scholar 

  17. A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, J. Am. Chem. Soc., 2012, 134, 6500; DOI: https://doi.org/10.1021/ja301042u.

    Article  CAS  PubMed  Google Scholar 

  18. S. Harder, Chem. Rev., 2010, 110, 3852; DOI: https://doi.org/10.1021/cr9003659.

    Article  CAS  PubMed  Google Scholar 

  19. C. Weetman, S. Inoue, ChemCatChem, 2018, 10, 4213; DOI: https://doi.org/10.1002/cctc.201800963.

    Article  CAS  Google Scholar 

  20. P. P. Power, Nature, 2010, 463, 171; DOI: https://doi.org/10.1038/nature08634.

    Article  CAS  PubMed  Google Scholar 

  21. F. Hanusch, L. Groll, S. Inoue, Chem. Sci., 2021, 12, 2001; DOI: https://doi.org/10.1039/d0sc03192e.

    Article  CAS  Google Scholar 

  22. B. Blom, M. Stoelzel, M. Driess, Chem. Eur. J., 2013, 19, 40; DOI: https://doi.org/10.1002/chem.201203072.

    Article  CAS  PubMed  Google Scholar 

  23. R. Waterman, P. G. Hayes, T. D. Tilley, Acc. Chem. Res., 2007, 40, 712; DOI: https://doi.org/10.1021/ar700028b.

    Article  CAS  PubMed  Google Scholar 

  24. C. Marschner, Eur. J. Inorg. Chem., 2015, 2015, 3805; DOI: https://doi.org/10.1002/ejic.201500495.

    Article  CAS  Google Scholar 

  25. T. Iwamoto, S. Ishida, in Organosilicon Compounds, Ed. V. Y. Lee, Academic Press, New York, 2017, pp. 361.

    Chapter  Google Scholar 

  26. W. Yang, Y. Dong, H. Sun, X. Li, Dalton Trans., 2021, 50, 6766; DOI: https://doi.org/10.1039/D1DT00523E.

    Article  CAS  PubMed  Google Scholar 

  27. M. Ghosh, S. Khan, Dalton Trans., 2021, 50, 10674; DOI: https://doi.org/10.1039/D1DT01955D.

    Article  CAS  PubMed  Google Scholar 

  28. T. A. Schmedake, M. Haaf, B. J. Paradise, A. J. Millevolte, D. R. Powell, R. West, J. Organomet. Chem., 2001, 636, 17; DOI: https://doi.org/10.1016/S0022-328X(01)00765-3.

    Article  CAS  Google Scholar 

  29. M. J. Krahfuss, U. Radius, Dalton Trans., 2021, 50, 6752; DOI: https://doi.org/10.1039/D1DT00617G.

    Article  CAS  PubMed  Google Scholar 

  30. R. Zhang, Y. Wang, Y. Zhao, C. Redshaw, I. L. Fedushkin, B. Wu, X.-J. Yang, Dalton Trans., 2021, 50, 13634; DOI: https://doi.org/10.1039/D1DT02120F.

    Article  CAS  PubMed  Google Scholar 

  31. V. A. Dodonov, O. A. Kushnerova, R. V. Rumyantsev, A. S. Novikov, V. K. Osmanov, I. L. Fedushkin, Dalton Trans., 2022, 51, 4113; DOI: https://doi.org/10.1039/D1DT04366H.

    Article  CAS  PubMed  Google Scholar 

  32. V. A. Dodonov, A. A. Skatova, I. L. Fedushkin, Russ. J. Coord. Chem., 2019, 45, 301; DOI: https://doi.org/10.1134/S1070328419040031.

    Article  CAS  Google Scholar 

  33. I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, X.-J. Yang, V. A. Chudakova, A. V. Piskunov, S. Demeshko, E. V. Baranov, Inorg. Chem., 2016, 55, 9047; DOI: https://doi.org/10.1021/acs.inorgchem.6b01514.

    Article  CAS  PubMed  Google Scholar 

  34. V. A. Dodonov, A. A. Skatova, A. V. Cherkasov, I. L. Fedushkin, Russ. Chem. Bull., 2016, 65, 1171; DOI: https://doi.org/10.1007/s11172-016-1433-9.

    Article  CAS  Google Scholar 

  35. I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, V. A. Chudakova, N. L. Bazyakina, A. V. Piskunov, S. V. Demeshko, G. K. Fukin, Inorg. Chem., 2014, 53, 5159; DOI: https://doi.org/10.1021/ic500259k.

    Article  CAS  PubMed  Google Scholar 

  36. I. L. Fedushkin, V. A. Dodonov, A. A. Skatova, V. G. Sokolov, A. V. Piskunov, G. K. Fukin, Chem. Eur. J., 2018, 24, 1877; DOI: https://doi.org/10.1002/chem.201704128.

    Article  CAS  PubMed  Google Scholar 

  37. W. Zhang, V. A. Dodonov, W. Chen, Y. Zhao, A. A. Skatova, I. L. Fedushkin, P. W. Roesky, B. Wu, X.-J. Yang, Chem. Eur. J., 2018, 24, 14994; DOI: https://doi.org/10.1002/chem.201802469.

    Article  CAS  PubMed  Google Scholar 

  38. V. A. Dodonov, W. Chen, Y. Zhao, A. A. Skatova, P. W. Roesky, B. Wu, X. J. Yang, I. L. Fedushkin, Chem. Eur. J., 2019, 25, 8259; DOI: https://doi.org/10.1002/chem.201900517.

    Article  CAS  PubMed  Google Scholar 

  39. V. A. Dodonov, L. Xiao, O. A. Kushnerova, E. V. Baranov, Y. Zhao, X.-J. Yang, I. L. Fedushkin, Chem. Commun., 2020, 56, 7475; DOI: https://doi.org/10.1039/D0CC03270K.

    Article  CAS  Google Scholar 

  40. V. A. Dodonov, O. A. Kushnerova, E. V. Baranov, A. S. Novikov, I. L. Fedushkin, Dalton Trans., 2021, 50, 8899; DOI: https://doi.org/10.1039/D1DT01199E.

    Article  CAS  PubMed  Google Scholar 

  41. V. G. Sokolov, T. S. Koptseva, V. A. Dodonov, R. V. Rumyantsev, I. L. Fedushkin, Russ. Chem. Bull., 2018, 67, 2164; DOI: https://doi.org/10.1007/s11172-018-2349-3.

    Article  CAS  Google Scholar 

  42. W. Chen, V. A. Dodonov, V. G. Sokolov, L. Liu, E. V. Baranov, Y. Zhao, I. L. Fedushkin, X.-J. Yang, Organometallics, 2021, 40, 490; DOI: https://doi.org/10.1021/acs.organomet.0c00738.

    Article  CAS  Google Scholar 

  43. V. A. Dodonov, W. Chen, L. Liu, V. G. Sokolov, E. V. Baranov, A. A. Skatova, Y. Zhao, B. Wu, X.-J. Yang, I. L. Fedushkin, Inorg. Chem., 2021, 60, 14602; DOI: https://doi.org/10.1021/acs.inorgchem.1c01581.

    Article  CAS  PubMed  Google Scholar 

  44. V. M. Makarov, T. S. Koptseva, V. G. Sokolov, V. A. Dodonov, A. A. Skatova, E. V. Baranov, I. L. Fedushkin, Russ. J. Coord. Chem., 2020, 46, 215; DOI: https://doi.org/10.1134/S1070328420030045.

    Article  CAS  Google Scholar 

  45. V. A. Dodonov, A. G. Morozov, R. V. Rumyantsev, G. K. Fukin, A. A. Skatova, P. W. Roesky, I. L. Fedushkin, Inorg. Chem., 2019, 58, 16559; DOI: https://doi.org/10.1021/acs.inorgchem.9b02592.

    Article  CAS  PubMed  Google Scholar 

  46. A. G. Morozov, T. V. Martemyanova, V. A. Dodonov, O. V. Kazarina, I. L. Fedushkin, Eur. J. Inorg. Chem., 2019, 2019, 4198; DOI: https://doi.org/10.1002/ejic.201900715.

    Article  CAS  Google Scholar 

  47. I. L. Fedushkin, A. N. Lukoyanov, N. M. Khvoinova, A. V. Cherkasov, Russ. Chem. Bull., 2013, 62, 2454; DOI: https://doi.org/10.1007/s11172-013-0355-z.

    Article  CAS  Google Scholar 

  48. I. L. Fedushkin, N. M. Khvoinova, A. Y. Baurin, G. K. Fukin, Russ. Chem. Bull., 2006, 55, 451; DOI: https://doi.org/10.1007/s11172-006-0277-0.

    Article  CAS  Google Scholar 

  49. A. V. Piskunov, I. A. Aivaz’yan, V. K. Cherkasov, G. A. Abakumov, J. Organomet. Chem., 2006, 691, 1531; DOI: https://doi.org/10.1016/j.jorganchem.2005.11.064.

    Article  CAS  Google Scholar 

  50. A. H. Cowley, Z. Lu, J. N. Jones, J. A. Moore, J. Organomet. Chem., 2004, 689, 2562; DOI: https://doi.org/10.1016/j.jorganchem.2004.05.010.

    Article  CAS  Google Scholar 

  51. E. Conrad, N. Burford, U. Werner-Zwanziger, R. McDonald, M. J. Ferguson, Chem. Commun., 2010, 46, 2465; DOI: https://doi.org/10.1039/B924918D.

    Article  CAS  Google Scholar 

  52. A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, Polyhedron, 2015, 90, 47; DOI: https://doi.org/10.1016/j.poly.2015.01.035.

    Article  CAS  Google Scholar 

  53. D. Rosiak, A. Okuniewski, J. Chojnacki, Polyhedron, 2018, 146, 35; DOI: https://doi.org/10.1016/j.poly.2018.02.016.

    Article  CAS  Google Scholar 

  54. S. S. Chitnis, B. Peters, E. Conrad, N. Burford, R. McDonald, M. J. Ferguson, Chem. Commun., 2011, 47, 12331; DOI: https://doi.org/10.1039/C1CC15693D.

    Article  CAS  Google Scholar 

  55. A. D. Horton, A. G. Orpen, Organometallics, 1992, 11, 1193; DOI: https://doi.org/10.1021/om00039a028.

    Article  CAS  Google Scholar 

  56. R. T. Tjahjanto, M. F. Peintinger, T. Bredow, J. Beck, Eur. J. Inorg. Chem., 2012, 2012, 3625; DOI: https://doi.org/10.1002/ejic.201200067.

    Article  CAS  Google Scholar 

  57. M. J. Krahfuss, U. Radius, Inorg. Chem., 2020, 59, 10976; DOI: https://doi.org/10.1021/acs.inorgchem.0c01462.

    Article  CAS  PubMed  Google Scholar 

  58. Y. Zhang, F. Cervantes-Lee, K. H. Pannell, Organometallics, 2003, 22, 2517; DOI: https://doi.org/10.1021/om030026+.

    Article  CAS  Google Scholar 

  59. R. F. Bryan, P. T. Greene, J. Chem. Soc. A: Inorg., Phys., Theor., 1970, 3064; DOI: https://doi.org/10.1039/J19700003064.

  60. D. R. Lide, CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM Version 2010), CRC Press/Taylor and Francis, Boca Raton, FL.

  61. Y. V. Zefirov, P. M. Zorky, Russ. Chem. Rev., 1995, 64, 415; DOI: https://doi.org/10.1070/RC1995v064n05ABEH000157.

    Article  Google Scholar 

  62. C. Nami, M. Satoshi, S. Shin-ichiro, A. Wataru, Bull. Chem. Soc. Jpn, 1996, 69, 1613; DOI: https://doi.org/10.1246/bcsj.69.1613.

    Article  Google Scholar 

  63. S.-H. Zhang, H.-X. Yeong, C.-W. So, Chem. Eur. J., 2011, 17, 3490; DOI: https://doi.org/10.1002/chem.201002611.

    Article  CAS  PubMed  Google Scholar 

  64. P. Zark, A. Schäfer, A. Mitra, D. Haase, W. Saak, R. West, T. Müller, J. Organomet. Chem., 2010, 695, 398; DOI: https://doi.org/10.1016/j.jorganchem.2009.10.034.

    Article  CAS  Google Scholar 

  65. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42; DOI: https://doi.org/10.1016/j.jmr.2005.08.013.

    Article  CAS  PubMed  Google Scholar 

  66. Bruker SAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.

  67. G. M. Sheldrick, Acta Crystallographica Section A, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  68. G. M. Sheldrick, SHELXTL. Version 6.14. Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2003.

    Google Scholar 

  69. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dodonov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

The study was financially supported by the Russian Science Foundation (Project No. 21-73-20153) and performed using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” with the financial support from the Ministry of Science and Higher Education of the Russian Federation (grant “Ensuring the Development of the Material and Technical Infrastructure of the Centers for Collective Use of Scientific Equipment,” unique identifier RF-2296. 61321X0017, agreement number 075-15-2021-670).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1760–1769, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodonov, V.A., Kushnerova, O.A., Rumyantsev, R.V. et al. Synthesis and reactivity of the complexes [(dpp-bian)SiCl2] and [(dpp-bian)Si{FeCp(CO)}2(μ-CO)] (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene). Russ Chem Bull 71, 1760–1769 (2022). https://doi.org/10.1007/s11172-022-3587-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3587-y

Key words

Navigation