Skip to main content
Log in

Mining network-level properties of Twitter altmetrics data

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Social networking sites play a significant role in altmetrics. While 90% of all altmetric mentions come from Twitter, the known microscopic and macroscopic properties of Twitter altmetrics data are limited. In this study, we present a large-scale analysis of Twitter altmetrics data using social network analysis techniques on the ‘mention’ network of Twitter users. Exploiting the network-level properties of over 1.4 million tweets, corresponding to 77,757 scholarly articles, this study focuses on the following aspects of Twitter altmetrics data: (a) the influence of organizational accounts; (b) the formation of disciplinary communities; (c) the cross-disciplinary interaction among Twitter users; (d) the network motifs of influential Twitter users; and (e) testing the small-world property. The results show that Twitter-based social media communities have unique characteristics, which may affect social media usage counts either directly or indirectly. Therefore, instead of treating altmetrics data as a black box, the underlying social media networks, which may either inflate or deflate social media usage counts, need further scrutiny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.researchgate.net.

  2. http://theinf1.informatik.uni-jena.de/motifs/.

References

  • Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594–607.

    Article  Google Scholar 

  • Alon, U. (2007). Network motifs: Theory and experimental approaches. Nature Reviews Genetics, 8(6), 450.

    Article  Google Scholar 

  • Alperin, J. P., & Haustein, S. (2017). Applying social network analysis to explore Twitter diffusion patterns. In Altmetrics17 workshop.

  • Barabási, A. L. (2009). Scale-free networks: A decade and beyond. Science, 325(5939), 412–413.

    Article  MathSciNet  MATH  Google Scholar 

  • Barabási, A.-L. (2016). Network science. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In Third international AAAI conference on weblogs and social media.

  • Batagelj, V., & Brandes, U. (2005). Efficient generation of large random networks. Physical Review E, 71(3), 036113.

    Article  Google Scholar 

  • Bialonski, S., Horstmann, M.-T., & Lehnertz, K. (2010). From brain to earth and climate systems: Small-world interaction networks or not? Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(1), 013134.

    Article  MathSciNet  Google Scholar 

  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    Article  Google Scholar 

  • Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564.

    Article  Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  MathSciNet  Google Scholar 

  • Bornmann, L., & Haunschild, R. (2018). Allegation of scientific misconduct increases Twitter attention. Scientometrics, 115(2), 1097–1100.

    Article  Google Scholar 

  • Carrington, P. J., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis (Vol. 28). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Costas, R., van Honk, J., & Franssen, T. (2017). Scholars on Twitter: Who and how many are they? arXiv preprint arXiv:1712.05667.

  • Didegah, F., & Thelwall, M. (2018). Co-saved, co-tweeted, and co-cited networks. Journal of the Association for Information Science and Technology, 69(8), 959–973.

    Article  Google Scholar 

  • Dinsmore, A., Allen, L., & Dolby, K. (2014). Alternative perspectives on impact: the potential of ALMs and altmetrics to inform funders about research impact. PLoS Biology, 12(11), e1002003.

    Article  Google Scholar 

  • Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.

    Article  MathSciNet  Google Scholar 

  • Haddawy, P., Hassan, S. U., Asghar, A., & Amin, S. (2016). A comprehensive examination of the relation of three citation-based journal metrics to expert judgment of journal quality. Journal of Informetrics, 10(1), 162–173.

    Article  Google Scholar 

  • Hassan, S.-U., Imran, M., Gillani, U., Aljohani, N. R., Bowman, T. D., & Didegah, F. (2017). Measuring social media activity of scientific literature: An exhaustive comparison of Scopus and novel altmetrics big data. Scientometrics, 113(2), 1037–1057.

    Article  Google Scholar 

  • Haustein, S., Bowman, T. D., Holmberg, K., Tsou, A., Sugimoto, C. R., & Larivière, V. (2016). Tweets as impact indicators: Examining the implications of automated “bot” accounts on Twitter. Journal of the Association for Information Science and Technology, 67(1), 232–238.

    Article  Google Scholar 

  • Hoffmann, C. P., Lutz, C., & Meckel, M. (2016). A relational altmetric? Network centrality on Research Gate as an indicator of scientific impact. Journal of the Association for Information Science and Technology, 67(4), 765–775.

    Article  Google Scholar 

  • Imran, M., Akhtar, A., Said, A., Safder, I., Hassan, S.-U., & Aljohani, N. R. (2018). Exploiting social networks of Twitter in altmetrics big data. In 23rd international conference on science and technology indicators (STI 2018), September 1214, 2018, Leiden, The Netherlands. Centre for Science and Technology Studies (CWTS).

  • Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull Soc Vaudoise Sci Nat, 37, 241–272.

    Google Scholar 

  • Jordan, K. (2014). Academics and their online networks: Exploring the role of academic social networking sites. First Monday, 19(11).

  • Jordan, K. (2017). Understanding the structure and role of academics’ ego-networks on social networking sites (Ph.D. Thesis). The Open University.

  • Lutz, C., & Hoffmann, C. P. (2018). Making academic social capital visible: Relating SNS-based, alternative and traditional metrics of scientific impact. Social Science Computer Review, 36(5), 632–643.

    Article  Google Scholar 

  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824–827.

    Article  Google Scholar 

  • Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4(3), 265–277.

    Article  Google Scholar 

  • Otte, E., & Rousseau, R. (2002). Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science, 28(6), 441–453.

    Article  Google Scholar 

  • Piwowar, H. (2013). Altmetrics: Value all research products. Nature, 493(7431), 159.

    Article  Google Scholar 

  • Priem, J., & Hemminger, B. H. (2010). Scientometrics 2.0: New metrics of scholarly impact on the social Web. First Monday, 15(7).

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences, 105(45), 17268–17272.

    Article  Google Scholar 

  • Said, A., Abbasi, R. A., Maqbool, O., Daud, A., & Aljohani, N. R. (2018). CC-GA: A clustering coefficient based genetic algorithm for detecting communities in social networks. Applied Soft Computing, 63, 59–70.

    Article  Google Scholar 

  • Thelwall, M., & Nevill, T. (2018). Could scientists use Altmetric. com scores to predict longer-term citation counts? Journal of Informetrics, 12(1), 237–248.

    Article  Google Scholar 

  • Vainio, J., & Holmberg, K. (2017). Highly tweeted science articles: who tweets them? An analysis of Twitter user profile descriptions. Scientometrics, 112(1), 345–366.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393(6684), 440.

    Article  MATH  Google Scholar 

  • Wernicke, S. (2006). Efficient detection of network motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 3(4), 347–359.

    Article  Google Scholar 

  • Wilsdon, J. (2016). The metric tide: Independent review of the role of metrics in research assessment and management. Beverly Hills: Sage.

    Google Scholar 

  • Wouters, P., & Costas, R. (2012). Users, narcissism and control: tracking the impact of scholarly publications in the 21st century. SURFfoundation Utrecht.

  • Yan, W., & Zhang, Y. (2018). Research universities on the ResearchGate social networking site: An examination of institutional differences, research activity level, and social networks formed. Journal of Informetrics, 12(1), 385–400.

    Article  Google Scholar 

  • Yang, J., McAuley, J., & Leskovec, J. (2013). Community detection in networks with node attributes. In Data mining (ICDM), 2013 IEEE 13th international conference on (pp. 1151–1156). IEEE.

  • Yu, H., Xu, S., Xiao, T., Hemminger, B. M., & Yang, S. (2017). Global science discussed in local altmetrics: Weibo and its comparison with Twitter. Journal of Informetrics, 11(2), 466–482.

    Article  Google Scholar 

  • Zahedi, Z., & Haustein, S. (2018). On the relationships between bibliographic characteristics of scientific documents and citation and Mendeley readership counts: A large-scale analysis of Web of Science publications. Journal of Informetrics, 12(1), 191–202.

    Article  Google Scholar 

Download references

Acknowledgements

The research has been supported by the National Research Programme for Universities Grant No. 6857/Punjab/NRPU/R&D/HEC/2016, funded by the Higher Education Commission of Pakistan, with Dr. Saeed Ul Hassan as Principal Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed-Ul Hassan.

Appendix

Appendix

This section presents the top 5 influential users from each community with their fields and types. Field attribute represents the subject-field or domain of the user, which helps to understand the community structure of the network. Note that subject-field and/or domain is manually extracted from the Twitter users’ profiles to properly label the influential users. There are eight major communities which cover more than 98% of users of the whole network (Table 3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, A., Bowman, T.D., Abbasi, R.A. et al. Mining network-level properties of Twitter altmetrics data. Scientometrics 120, 217–235 (2019). https://doi.org/10.1007/s11192-019-03112-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03112-0

Keywords

Navigation