Skip to main content

Advertisement

Log in

The Isotopic Imprint of Life on an Evolving Planet

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Stable isotope compositions of biologically cycled elements encode information about the interaction between life and environment. On Earth, geochemical biomarkers have been used to probe the extent, nature, and activity of modern and ancient organisms. However, extracting biological information from stable isotopic compositions requires untangling the interconnected nature of the Earth’s biogeochemical system, and must be viewed through the lens of evolving metabolisms on an evolving planet. In this chapter, we provide an introduction to isotope geobiology and to the geobiological history of Earth. We discuss the isotope biogeochemistry of the biologically essential elements carbon, nitrogen and sulfur, and we summarize their distribution on the modern Earth as an interconnected network of isotopically fractionated reservoirs with contrasting residence times. We show how this framework can be used to explore the evolution of life and environments on the ancient Earth, which is our closest accessible analogue for an extraterrestrial planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • C. Achtnich, F. Bak, R. Conrad, Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 19(1), 65–72 (1995)

    Google Scholar 

  • M. Ader, P. Sansjofre, G.P. Halverson, V. Busigny, R.I. Trindade, M. Kunzmann, A.C. Nogueira, Ocean redox structure across the late neoproterozoic oxygenation event: a nitrogen isotope perspective. Earth Planet. Sci. Lett. 396, 1–13 (2014)

    ADS  Google Scholar 

  • P. Aharon, B. Fu, Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta 64(2), 233–246 (2000)

    ADS  Google Scholar 

  • P. Aharon, B. Fu, Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem. Geol. 195(1), 201–218 (2003)

    ADS  Google Scholar 

  • B. Alexander, J. Savarino, N.I. Barkov, R.J. Delmas, M.H. Thiemens, Climate driven changes in the oxidation pathways of atmospheric sulfur. Geophys. Res. Lett. 29(14), 30-1–30-4 (2002)

    Google Scholar 

  • B. Alexander, R.J. Park, D.J. Jacob, Q.B. Li, R.M. Yantosca, J. Savarino, C.C.W. Lee, M.H. Thiemens, Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J. Geophys. Res., Atmos. 110(D10), D10307 (2005)

    ADS  Google Scholar 

  • B. Alexander, D.J. Allman, H.M. Amos, T.D. Fairlie, J. Dachs, D.A. Hegg, R.S. Sletten, Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. J. Geophys. Res., Atmos. 117(D6), D06304 (2012)

    ADS  Google Scholar 

  • T. Algeo, G. Luo, H. Song, T. Lyons, D. Canfield, Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences 12(7), 2131–2151 (2015)

    ADS  Google Scholar 

  • F. Alhaique, D. Giacchetti, M. Marchetti, F.M. Riccieri, Effect of surfactant monomers on chloramphenicol association to an albuminlecithin complex: a model for modified drug absorption. J. Pharm. Pharmacol. 27(11), 811–817 (1975)

    Google Scholar 

  • J.F. Allen, B. Thake, W.F. Martin, Nitrogenase inhibition limited oxygenation of Earth’s proterozoic atmosphere. Trends Plant Sci. 24(11), 1022–1031 (2019)

    Google Scholar 

  • R. Aller, Sedimentary diagenesis, depositional environments, and benthic fluxes, in Treatise on Geochemistry (Elsevier, Amsterdam, 2014), pp. 293–334

    Google Scholar 

  • A. Amrani, Organosulfur compounds: molecular and isotopic evolution from biota to oil and gas. Annu. Rev. Earth Planet. Sci. 42(1), 733–768 (2014)

    ADS  MathSciNet  Google Scholar 

  • A.D. Anbar, A.H. Knoll, Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297(5584), 1137–1142 (2002)

    ADS  Google Scholar 

  • A.D. Anbar, Y. Duan, T.W. Lyons, G.L. Arnold, B. Kendall, R.A. Creaser, A.J. Kaufman, G.W. Gordon, C. Scott, J. Garvin, R. Buick, A whiff of oxygen before the great oxidation event? Science 317(5846), 1903–1906 (2007)

    ADS  Google Scholar 

  • G. Antler, A. Pellerin, A critical look at the combined use of sulfur and oxygen isotopes to study microbial metabolisms in methane-rich environments. Front. Microbiol. 9, 519 (2018)

    Google Scholar 

  • G. Antler, A.V. Turchyn, V. Rennie, B. Herut, O. Sivan, Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim. Cosmochim. Acta 118, 98–117 (2013)

    ADS  Google Scholar 

  • G. Antler, A.V. Turchyn, B. Herut, A. Davies, V.C.F. Rennie, O. Sivan, Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments. Estuar. Coast. Shelf Sci. 142, 4–11 (2014)

    ADS  Google Scholar 

  • G. Antler, A.V. Turchyn, S. Ono, O. Sivan, T. Bosak, Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim. Cosmochim. Acta 203, 364–380 (2017)

    ADS  Google Scholar 

  • D. Archer, B. Buffett, V. Brovkin, Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc. Natl. Acad. Sci. USA 106(49), 20596–20601 (2009)

    ADS  Google Scholar 

  • A.R. Babbin, R.G. Keil, A.H. Devol, B.B. Ward, Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344(6182), 406–408 (2014)

    ADS  Google Scholar 

  • D. Babikov, Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth. Proc. Natl. Acad. Sci. 114(12), 3062–3067 (2017)

    ADS  Google Scholar 

  • A. Bachan, K.V. Lau, M.R. Saltzman, E. Thomas, L.R. Kump, J.L. Payne, American journal of science: a model for the decrease in amplitude of carbon isotope excursions across the Phanerozoic. Am. J. Sci. 317(6), 641–676 (2017)

    ADS  Google Scholar 

  • M.P. Badger, T.B. Chalk, G.L. Foster, P.R. Bown, S.J. Gibbs, P.F. Sexton, D.N. Schmidt, H. Pälike, A. Mackensen, R.D. Pancost, Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Clim. Past 15(2), 539–554 (2019)

    Google Scholar 

  • F. Bak, N. Pfennig, Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147(2), 184–189 (1987)

    Google Scholar 

  • N. Balci, W.C. Shanks, B. Mayer, K.W. Mandernack, Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71(15), 3796–3811 (2007)

    ADS  Google Scholar 

  • J.L. Banner, G.N. Hanson, Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 54(11), 3123–3137 (1990)

    ADS  Google Scholar 

  • H. Bao, Sulfate: a time capsule for Earth’s O2, O3, and H2O. Chem. Geol. 395, 108–118 (2015)

    ADS  Google Scholar 

  • H. Bao, D.R. Marchant, Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. J. Geophys. Res., Atmos. 111(D16), D16301 (2006)

    ADS  Google Scholar 

  • H. Bao, M.H. Thiemens, J. Farquhar, D.A. Campbell, C.C.-W. Lee, K. Heine, D.B. Loope, Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406(6792), 176–178 (2000)

    ADS  Google Scholar 

  • H. Bao, G.M. Michalski, M.H. Thiemens, Sulfate oxygen-17 anomalies in desert varnishes. Geochim. Cosmochim. Acta 65(13), 2029–2036 (2001a)

    ADS  Google Scholar 

  • H. Bao, M.H. Thiemens, K. Heine, Oxygen-17 excesses of the central namib gypcretes: spatial distribution. Earth Planet. Sci. Lett. 192(2), 125–135 (2001b)

    ADS  Google Scholar 

  • H. Bao, J.R. Lyons, C. Zhou, Triple oxygen isotope evidence for elevated CO2 levels after a neoproterozoic glaciation. Nature 453(7194), 504–506 (2008)

    ADS  Google Scholar 

  • H. Bao, I.J. Fairchild, P.M. Wynn, C. Spötl, Stretching the envelope of past surface environments: neoproterozoic Glacial Lakes from Svalbard. Science 323(5910), 119–122 (2009)

    ADS  Google Scholar 

  • H. Bao, S. Yu, D.Q. Tong, Massive volcanic SO2 oxidation and sulphate aerosol deposition in Cenozoic North America. Nature 465(7300), 909–912 (2010)

    ADS  Google Scholar 

  • Y.M. Bar-On, R. Phillips, R. Milo, The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115(25), 6506–6511 (2018)

    Google Scholar 

  • B. Batchelor, A.W. Lawrence, A kinetic model for autotrophic denitrification using elemental sulfur. Water Res. 12(12), 1075–1084 (1978)

    Google Scholar 

  • N.H. Batjes, Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65(1), 10–21 (2014)

    Google Scholar 

  • T. Bauersachs, S. Schouten, J. Compaore, U. Wollenzien, L.J. Stal, J.S. Sinninghe Damste, Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria. Limnol. Oceanogr. 54(4), 1403–1411 (2009)

    ADS  Google Scholar 

  • D.A. Beard, H. Qian, Relationship between thermodynamic driving force and one-way fluxes in reversible processes. PLoS ONE 2(1), 1–4 (2007)

    Google Scholar 

  • V. Beaumont, F. Robert, Nitrogen isotope ratios of kerogens in precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Res. 96(1–2), 63–82 (1999)

    ADS  Google Scholar 

  • G.E. Bebout, M.L. Fogel, Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim. Cosmochim. Acta 56(7), 2839–2849 (1992)

    ADS  Google Scholar 

  • G.E. Bebout, M.L. Fogel, P. Cartigny, Nitrogen: highly volatile yet surprisingly compatible. Elements 9(5), 333–338 (2013)

    Google Scholar 

  • A. Bekker, H.D. Holland, Oxygen overshoot and recovery during the early paleoproterozoic. Earth Planet. Sci. Lett. 317(318), 295–304 (2012)

    ADS  Google Scholar 

  • A. Bekker, H.D. Holland, P.L. Wang, D. Rumble, H.J. Stein, J.L. Hannah, L.L. Coetzee, N.J. Beukes, Dating the rise of atmospheric oxygen. Nature 427(6970), 117–120 (2004)

    ADS  Google Scholar 

  • I.A. Berg, D. Kockelkorn, W.H. Ramos-Vera, R.F. Say, J. Zarzycki, M. Hügler, B.E. Alber, G. Fuchs, Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8(6), 447–460 (2010)

    Google Scholar 

  • R.A. Berner, Models for carbon and sulfur cycles and atmospheric oxygen; application to Paleozoic geologic history. Am. J. Sci. 287(3), 177–196 (1987)

    ADS  Google Scholar 

  • R.A. Berner, D.E. Canfield, A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289(4), 333–361 (1989)

    ADS  Google Scholar 

  • R.A. Berner, Z. Kothavala, Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301(2), 182–204 (2001)

    ADS  Google Scholar 

  • V.J. Bertics, J.A. Sohm, T. Treude, C.E.T. Chow, D.G. Capone, J.A. Fuhrman, W. Ziebis, Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Mar. Ecol. Prog. Ser. 409, 1–15 (2010)

    ADS  Google Scholar 

  • E. Bertran, A. Waldeck, B.A. Wing, I. Halevy, W.D. Leavitt, A.S. Bradley, D.T. Johnston, Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances. ISME J. 14(6), 1508–1519 (2020)

    Google Scholar 

  • R.I. Bickley, V. Vishwanathan, Photocatalytically induced fixation of molecular nitrogen by near UV radiation. Nature 280(5720), 306–308 (1979)

    ADS  Google Scholar 

  • I.N. Bindeman, J.M. Eiler, B.A. Wing, J. Farquhar, Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim. Cosmochim. Acta 71(9), 2326–2343 (2007)

    ADS  Google Scholar 

  • L.R. Bird, K.S. Dawson, G.L. Chadwick, J.M. Fulton, V.J. Orphan, K.H. Freeman, Carbon isotopic heterogeneity of coenzyme F430 and membrane lipids in methane-oxidizing archaea. Geobiology 17(6), 611–627 (2019)

    Google Scholar 

  • N. Blair, A. Leu, E. Munoz, J. Olsen, E. Kwong, D. Des Marais, Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. Environ. Microbiol. 50(4), 996–1001 (1985)

    Google Scholar 

  • C.C. Blair, S. D’Hondt, A.J. Spivack, R.H. Kingsley, Radiolytic hydrogen and microbial respiration in subsurface sediments. Astrobiology 7(6), 951–970 (2007)

    ADS  Google Scholar 

  • R.E. Blankenship, M.T. Madigan, C.E. Bauer (eds.), Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis and Respiration (Springer, Dordrecht, 2004)

    Google Scholar 

  • M.B. Blaser, L.K. Dreisbach, R. Conrad, Carbon isotope fractionation of 11 acetogenic strains grown on H2 and CO2. Appl. Environ. Microbiol. 79(6), 1787–1794 (2013)

    Google Scholar 

  • A.J. Boller, P.J. Thomas, C.M. Cavanaugh, K.M. Scott, Low stable carbon isotope fractionation by coccolithophore RubisCO. Geochim. Cosmochim. Acta 75(22), 7200–7207 (2011)

    ADS  Google Scholar 

  • A.J. Boller, P.J. Thomas, C.M. Cavanaugh, K.M. Scott, Isotopic discrimination and kinetic parameters of RubisCO from the marine bloom-forming diatom, Skeletonema costatum. Geobiology 13(1), 33–43 (2015)

    Google Scholar 

  • M.E. Böttcher, B. Oelschläger, T. Höpner, H.-J. Brumsack, J. Rullkötter, Sulfate reduction related to the early diagenetic degradation of organic matter and “black spot” formation in tidal sandflats of the German Wadden Sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results. Org. Geochem. 29(5–7), 1517–1530 (1998)

    Google Scholar 

  • M.E. Böttcher, B. Thamdrup, T. Vennemann, Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim. Cosmochim. Acta 65(10), 1601–1609 (2001)

    ADS  Google Scholar 

  • M.E. Böttcher, B. Thamdrup, M. Gehre, A. Theune, 34S/32S and 18O/16O fractionation during sulfur disproportionation by desulfobulbus propionicus. Geomicrobiol. J. 22(5), 219–226 (2005)

    Google Scholar 

  • S.R. Boyd, P. Philippot, Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland. Chem. Geol. 144(3–4), 257–268 (1998)

    ADS  Google Scholar 

  • A.S. Bradley, W.D. Leavitt, D.T. Johnston, Revisiting the dissimilatory sulfate reduction pathway. Geobiology 9(5), 446–457 (2011)

    Google Scholar 

  • A.S. Bradley, W.D. Leavitt, M. Schmidt, A.H. Knoll, P.R. Girguis, D.T. Johnston, Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology 14(1), 91–101 (2016)

    Google Scholar 

  • S.D. Bridgham, J.P. Megonigal, J.K. Keller, N.B. Bliss, C. Trettin, The carbon balance of North American wetlands. Wetlands 26(4), 889–916 (2006)

    Google Scholar 

  • P. Brimblecombe, The global sulfur cycle, in Treatise on Geochemistry, vol. 10, 2nd edn. (Elsevier, Amsterdam, 2013), pp. 559–591

    Google Scholar 

  • H.G. Britton, The Ussing relationship and chemical reactions: possible application to enzymatic investigations. Nature 205(4978), 1323–1324 (1965)

    Google Scholar 

  • J.J. Brocks, G.D. Love, R.E. Summons, A.H. Knoll, G.A. Logan, S.A. Bowden, Biomarker evidence for green and purple sulphur bacteria in a stratified palaeoproterozoic sea. Nature 437(7060), 866–870 (2005)

    ADS  Google Scholar 

  • J.J. Brocks, A.J. Jarrett, E. Sirantoine, C. Hallmann, Y. Hoshino, T. Liyanage, The rise of algae in cryogenian oceans and the emergence of animals. Nature 548(7669), 578–581 (2017)

    ADS  Google Scholar 

  • W.S. Broecker, J. van Donk, Insolation Changes, Ice Volumes, and the O18 Record in Deep-Sea Cores Rev. Geophys. 8(1), 169–198 (1970)

    ADS  Google Scholar 

  • B. Brunner, S.M. Bernasconi, A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim. Cosmochim. Acta 69(20), 4759–4771 (2005)

    ADS  Google Scholar 

  • B. Brunner, S. Contreras, M.F. Lehmann, O. Matantseva, M. Rollog, T. Kalvelage, G. Klockgether, G. Lavik, M.S.M. Jetten, B. Kartal, M.M.M. Kuypers, Nitrogen isotope effects induced by anammox bacteria. Proc. Natl. Acad. Sci. 110(47), 18994–18999 (2013)

    ADS  Google Scholar 

  • R.N. Bryant, C. Jones, M.R. Raven, M.L. Gomes, W.M. Berelson, A.S. Bradley, D.A. Fike, Sulfur isotope analysis of microcrystalline iron sulfides using secondary ion mass spectrometry imaging: extracting local paleo-environmental information from modern and ancient sediments. Rapid Commun. Mass Spectrom. 33(5), 491–502 (2019)

    ADS  Google Scholar 

  • C. Buchwald, K. Grabb, C.M. Hansel, S.D. Wankel, Constraining the role of iron in environmental nitrogen transformations: dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 186, 1–12 (2016)

    ADS  Google Scholar 

  • R. Buick, D.J. Des Marais, A.H. Knoll, Stable isotopic compositions of carbonates from the mesoproterozoic bangemall group, northwestern Australia. Chem. Geol. 123(1–4), 153–171 (1995)

    ADS  Google Scholar 

  • R.J. Buresh, J.T. Moraghan, Chemical reduction of nitrate by ferrous iron. J. Environ. Qual. 5(3), 320–325 (1976)

    Google Scholar 

  • A. Burke, K.A. Moore, M. Sigl, D.C. Nita, J.R. McConnell, J.F. Adkins, Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores. Earth Planet. Sci. Lett. 521, 113–119 (2019)

    ADS  Google Scholar 

  • V. Busigny, O. Lebeau, M. Ader, B. Krapež, A. Bekker, Nitrogen cycle in the late Archean ferruginous ocean. Chem. Geol. 362, 115–130 (2013)

    ADS  Google Scholar 

  • N.J. Butterfield, Macroevolution and macroecology through deep time. Palaeontology 50(1), 41–55 (2007)

    MathSciNet  Google Scholar 

  • D.E. Canfield, A new model for proterozoic ocean chemistry. Nature 396(6710), 450–453 (1998)

    ADS  Google Scholar 

  • D.E. Canfield, Biogeochemistry of sulfur isotopes. Rev. Mineral. Geochem. 43, 606–636 (2001)

    Google Scholar 

  • D.E. Canfield, The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304(10), 839–861 (2004)

    ADS  Google Scholar 

  • D.E. Canfield, J. Farquhar, Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl. Acad. Sci. USA 106(20), 8123–8127 (2009)

    ADS  Google Scholar 

  • D.E. Canfield, R. Raiswell, The evolution of the sulfur cycle. Am. J. Sci. 299(7–9), 697–723 (1999)

    ADS  Google Scholar 

  • D.E. Canfield, A. Teske, Late proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382(6587), 127–132 (1996)

    ADS  Google Scholar 

  • D.E. Canfield, M.T. Rosing, C. Bjerrum, Early anaerobic metabolisms. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 361(1474), 1819–1834 (2006)

    Google Scholar 

  • D.E. Canfield, J. Farquhar, A.L. Zerkle, High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38(5), 415–418 (2010)

    ADS  Google Scholar 

  • J.D. Caranto, K.M. Lancaster, Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. USA 114(31), 8217–8222 (2017)

    Google Scholar 

  • J.D. Caranto, A.C. Vilbert, K.M. Lancaster, Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. USA 113(51), 14704–14709 (2016)

    Google Scholar 

  • E.J. Carpenter, H.R. Harvey, F. Brian, D.G. Capone, Biogeochemical tracers of the marine cyanobacterium trichodesmium. Deep-Sea Res., Part 1, Oceanogr. Res. Pap. 44(1), 27–38 (1997)

    Google Scholar 

  • P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9(5), 359–366 (2013)

    Google Scholar 

  • K.L. Casciotti, Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73(7), 2061–2076 (2009)

    ADS  Google Scholar 

  • D.C. Catling, M.W. Claire, How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237(1–2), 1–20 (2005)

    ADS  Google Scholar 

  • D.C. Catling, K.J. Zahnle, The Archean atmosphere. Sci. Adv. 6(9), eaax1420 (2020)

    ADS  Google Scholar 

  • A.R. Cavazos, M. Taillefert, Y. Tang, J.B. Glass, Kinetics of nitrous oxide production from hydroxylamine oxidation by birnessite in seawater. Mar. Chem. 202, 49–57 (2018)

    Google Scholar 

  • T.E. Cerling, J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, J.R. Ehieringer, Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647), 153–158 (1997)

    ADS  Google Scholar 

  • L.A. Chambers, P.A. Trudinger, Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J. Bacteriol. 123(1), 36–40 (1975)

    Google Scholar 

  • S. Chen, A.C. Gagnon, J.F. Adkins, Carbonic anhydrase, coral calcification and a new model of stable isotope vital effects. Geochim. Cosmochim. Acta 236, 179–197 (2018)

    ADS  Google Scholar 

  • M.I. Chicarelli, J.M. Hayes, B.N. Popp, C.B. Eckardt, J.R. Maxwell, Carbon and nitrogen isotopic compositions of alkyl porphyrins from the Triassic Serpiano oil shale. Geochim. Cosmochim. Acta 57(6), 1307–1311 (1993)

    ADS  Google Scholar 

  • P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C.L. Quéré, R. Myneni, S. Piao, P. Thornton, Carbon and other biogeochemical cycles, in Climate Change 2013 the Physical Science Basis: Working Group i Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, vol. 9781107057 (2013), pp. 465–570

    Google Scholar 

  • M.W. Claire, J.F. Kasting, S.D. Domagal-Goldman, E.E. Stüeken, R. Buick, V.S. Meadows, Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta 141, 365–380 (2014)

    ADS  Google Scholar 

  • G.E. Claypool, in Ventilation of Marine Sediments Indicated by Depth Profiles of Pore Water Sulfate and \(\delta^{34}\)S. The Geochemical Society Special Publications, vol. 9 (Elsevier, Amsterdam, 2004), pp. 59–65

    Google Scholar 

  • H.G. Close, R. Bovee, A. Pearson, Inverse carbon isotope patterns of lipids and kerogen record heterogeneous primary biomass. Geobiology 9(3), 250–265 (2011)

    Google Scholar 

  • A.J. Coby, F.W. Picardal, Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: evidence of a reaction between NO2- and cell surface-bound Fe2+. Appl. Environ. Microbiol. 71(9), 5267–5274 (2005)

    Google Scholar 

  • R.E. Criss, Principles of Stable Isotope Distribution (Oxford University Press, London, 1999)

    Google Scholar 

  • P.W. Crockford, J.A. Hayles, H. Bao, N.J. Planavsky, A. Bekker, P.W. Fralick, G.P. Halverson, T.H. Bui, Y. Peng, B.A. Wing, Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559(7715), 613–616 (2018)

    ADS  Google Scholar 

  • P.W. Crockford, M. Kunzmann, A. Bekker, J. Hayles, H. Bao, G.P. Halverson, Y. Peng, T.H. Bui, G.M. Cox, T.M. Gibson, S. Wörndle, R. Rainbird, A. Lepland, N.L. Swanson-Hysell, S. Master, B. Sreenivas, A. Kuznetsov, V. Krupenik, B.A. Wing, Claypool Continued: Extending the Isotopic Record of Sedimentary Sulfate (2019)

    Google Scholar 

  • S.A. Crowe, G. Paris, S. Katsev, C. Jones, S.-T. Kim, A.L. Zerkle, S. Nomosatryo, D.A. Fowle, J.F. Adkins, A.L. Sessions, J. Farquhar, D.E. Canfield, Sulfate was a trace constituent of Archean seawater. Science 346(6210), 735–739 (2014)

    ADS  Google Scholar 

  • H. Daims, E.V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, N. Jehmlich, M. Palatinszky, J. Vierheilig, A. Bulaev, R.H. Kirkegaard, M. Von Bergen, T. Rattei, B. Bendinger, P.H. Nielsen, M. Wagner, Complete nitrification by nitrospira bacteria. Nature 528(7583), 504–509 (2015)

    ADS  Google Scholar 

  • T. Dalsgaard, B. Thamdrup, L. Farías, N.P. Revsbech, Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57(5), 1331–1346 (2012)

    ADS  Google Scholar 

  • S.O. Danielache, C. Eskebjerg, M.S. Johnson, Y. Ueno, N. Yoshida, High-precision spectroscopy of 32S, 33S and 34S sulfur dioxide: ultraviolet absorption cross sections and isotope effects. J. Geophys. Res., Atmos. 113(D17), D17314 (2008)

    ADS  Google Scholar 

  • S.O. Danielache, S. Hattori, M.S. Johnson, Y. Ueno, S. Nanbu, N. Yoshida, Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S sulfur dioxide for the B1B1-X1A1 absorption band. J. Geophys. Res., Atmos. 117(D24), D24301 (2012)

    ADS  Google Scholar 

  • S.O. Danielache, S. Tomoya, A. Kondorsky, I. Tokue, S. Nanbu, Nonadiabatic calculations of ultraviolet absorption cross section of sulfur monoxide: isotopic effects on the photodissociation reaction. J. Chem. Phys. 140(4), 044319 (2014)

    ADS  Google Scholar 

  • A.E. Dekas, R.S. Poretsky, V.J. Orphan, Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326(5951), 422–426 (2009)

    ADS  Google Scholar 

  • C.C. Delwiche, P.L. Steyn, Nitrogen isotope fractionation in soils and microbial reactions. Environ. Sci. Technol. 4(11), 929–935 (1970)

    ADS  Google Scholar 

  • B. Demirel, P. Scherer, The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol. 7(2), 173–190 (2008)

    Google Scholar 

  • M.J. DeNiro, S. Epstein, Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197(4300), 261–263 (1977)

    ADS  Google Scholar 

  • M.J. DeNiro, S. Epstein, Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506 (1978)

    ADS  Google Scholar 

  • D.J. Des Marais, Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Org. Geochem. 27(5–6), 185–193 (1997)

    Google Scholar 

  • D.J. Des Marais, Isotopic evolution of the biogeochemical carbon cycle during the precambrian. Rev. Mineral. Geochem. 43(1), 555–578 (2001)

    Google Scholar 

  • P. Dhakal, C.J. Matocha, F.E. Huggins, M.M. Vandiviere, Nitrite reactivity with magnetite. Environ. Sci. Technol. 47(12), 6206–6213 (2013)

    ADS  Google Scholar 

  • G.R. Dickens, Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213(3–4), 169–183 (2003)

    ADS  Google Scholar 

  • A.G. Dickson, C. Goyet, Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. U. S. Department of Energy 1994(September):176, 187 (1994)

    Google Scholar 

  • T.A. Doane, The abiotic nitrogen cycle. ACS Earth Space Chem. 1(7), 411–421 (2017)

    Google Scholar 

  • S.D. Domagal-Goldman, J.F. Kasting, D.T. Johnston, J. Farquhar, Organic haze, glaciations and multiple sulfur isotopes in the mid-Archean era. Earth Planet. Sci. Lett. 269(1–2), 29–40 (2008)

    ADS  Google Scholar 

  • H.L. Drake, J.M. Akagi, Characterization of a novel thiosulfate-forming enzyme isolated from Desulfovibrio vulgaris. J. Bacteriol. 132(1), 132–138 (1977)

    Google Scholar 

  • J.L. Eigenbrode, K.H. Freeman, Late Archean rise of aerobic microbial ecosystems. Proc. Natl. Acad. Sci. USA 103(43), 15759–15764 (2006)

    ADS  Google Scholar 

  • D.L. Eldridge, J. Farquhar, Rates and multiple sulfur isotope fractionations associated with the oxidation of sulfide by oxygen in aqueous solution. Geochim. Cosmochim. Acta 237, 240–260 (2018)

    ADS  Google Scholar 

  • Y. Endo, S.O. Danielache, Y. Ueno, S. Hattori, M.S. Johnson, N. Yoshida, H.G. Kjaergaard, Photoabsorption cross-section measurements of 32S, 33S, 34S and 36S sulfur dioxide from 190 to 220 nm. J. Geophys. Res., Atmos. 120(6), 2546–2557 (2015)

    ADS  Google Scholar 

  • Y. Endo, Y. Ueno, S. Aoyama, S.O. Danielache, Sulfur isotope fractionation by broadband uv radiation to optically thin so2 under reducing atmosphere. Earth Planet. Sci. Lett. 453, 9–22 (2016)

    ADS  Google Scholar 

  • G. Etiope, K.R. Lassey, R.W. Klusman, E. Boschi, Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett. 35(9), L09307 (2008)

    ADS  Google Scholar 

  • P.G. Falkowski, The Biological and Geological Contingencies for the Rise of Oxygen on Earth (2011)

    Google Scholar 

  • P. Falkowski, R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F.T. Mackenzie, B. Moore, T. Pedersen, Y. Rosental, S. Seitzinger, V. Smetacek, W. Steffen, The global carbon cycle: a test of our knowledge of Earth as a system. Science 290(5490), 291–296 (2000)

    ADS  Google Scholar 

  • J. Farquhar, M.H. Thiemens, Oxygen cycle of the Martian atmosphere-regolith system: \(\Delta^{17}\)O of secondary phases in Nakhla and Lafayette. J. Geophys. Res., Planets 105(E5), 11991–11997 (2000)

    ADS  Google Scholar 

  • G.D. Farquhar, M.H. O’Leary, J.A. Berry, On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9(2), 121–137 (1982)

    Google Scholar 

  • G.D. Farquhar, J.R. Ehleringer, K.T. Hubick, Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40(1), 503–537 (1989)

    Google Scholar 

  • J. Farquhar, H. Bao, M. Thiemens, Atmospheric influence of Earth’s earliest sulfur cycle. Science 289(5480), 756–758 (2000)

    ADS  Google Scholar 

  • J. Farquhar, J. Savarino, S. Airieau, M.H. Thiemens, Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res., Planets 106(E12), 32829–32839 (2001)

    ADS  Google Scholar 

  • J. Farquhar, D.T. Johnston, B.A. Wing, K.S. Habicht, D.E. Canfield, S. Airieau, M.H. Thiemens, Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1(1), 27–36 (2003)

    Google Scholar 

  • J. Farquhar, D.T. Johnston, B.A. Wing, Implications of conservation of mass effects on mass-dependent isotope fractionations: influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction. Geochim. Cosmochim. Acta 71(24), 5862–5875 (2007)

    ADS  Google Scholar 

  • H.A. Favre, W.H. Powell, Nomenclature of Organic Chemistry (Royal Chem. Soc., London, 2014)

    Google Scholar 

  • K. Fennel, M. Follows, P.G. Falkowski, The co-evolution of the nitrogen, carbon and oxygen cycles in the proterozoic ocean. Am. J. Sci. 305(6-8 SPEC. ISS.), 526–545 (2005)

    ADS  Google Scholar 

  • J.G. Ferry, How to make a living by exhaling methane. Annu. Rev. Microbiol. 64(1), 453–473 (2010)

    Google Scholar 

  • V. Fichtner, H. Strauss, A. Immenhauser, D. Buhl, R.D. Neuser, A. Niedermayr, Diagenesis of carbonate associated sulfate. Chem. Geol. 463, 61–75 (2017)

    ADS  Google Scholar 

  • D.A. Fike, A.S. Bradley, C.V. Rose, Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43(1), 593–622 (2015)

    ADS  Google Scholar 

  • K. Finster, Microbiological disproportionation of inorganic sulfur compounds. J. Sulfur Chem. 29(3–4), 281–292 (2008)

    Google Scholar 

  • W.W. Fischer, J. Hemp, J.E. Johnson, Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44(1), 647–683 (2016)

    ADS  Google Scholar 

  • D. Fowler, M. Coyle, U. Skiba, M.A. Sutton, J.N. Cape, S. Reis, L.J. Sheppard, A. Jenkins, B. Grizzetti, J.N. Galloway, P. Vitousek, A. Leach, A.F. Bouwman, K. Butterbach-Bahl, F. Dentener, D. Stevenson, M. Amann, M. Voss, The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 368(1621), 20130164 (2013)

    Google Scholar 

  • H.B. Franz, A.C. McAdam, D.W. Ming, C. Freissinet, P.R. Mahaffy, D.L. Eldridge, W.W. Fischer, J.P. Grotzinger, C.H. House, J.A. Hurowitz, S.M. McLennan, S.P. Schwenzer, D.T. Vaniman, P.D. Archer, S.K. Atreya, P.G. Conrad, J.W. Dottin, J.L. Eigenbrode, K.A. Farley, D.P. Glavin, S.S. Johnson, C.A. Knudson, R.V. Morris, R. Navarro-González, A.A. Pavlov, R. Plummer, E.B. Rampe, J.C. Stern, A. Steele, R.E. Summons, B. Sutter, Large sulfur isotope fractionations in Martian sediments at Gale crater. Nat. Geosci. 10(9), 658–662 (2017)

    ADS  Google Scholar 

  • T. Freudenthal, T. Wagner, F. Wenzhöfer, M. Zabel, G. Wefer, Early diagenesis of organic matter from sediments of the Eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim. Cosmochim. Acta 65(11), 1795–1808 (2001)

    ADS  Google Scholar 

  • C. Frey, J.W. Dippner, M. Voss, Close coupling of N-cycling processes expressed in stable isotope data at the redoxcline of the Baltic Sea. Glob. Biogeochem. Cycles 28(9), 974–991 (2014)

    ADS  Google Scholar 

  • N.U. Frigaard, C. Dahl, Sulfur metabolism in phototrophic sulfur bacteria. Adv. Microb. Physiol. 54, 103–200 (2008)

    Google Scholar 

  • E.D. Galbraith, M. Kienast, A.L. Albuquerque, M.A. Altabet, F. Batista, D. Bianchi, S.E. Calvert, S. Contreras, X. Crosta, R. De Pol-Holz, N. Dubois, J. Etourneau, R. Francois, T.C. Hsu, T. Ivanochko, S.L. Jaccard, S.J. Kao, T. Kiefer, S. Kienast, M.F. Lehmann, P. Martinez, M. McCarthy, A.N. Meckler, A. Mix, J. Möbius, T.F. Pedersen, L. Pichevin, T.M. Quan, R.S. Robinson, E. Ryabenko, A. Schmittner, R. Schneider, A. Schneider-Mor, M. Shigemitsu, D. Sinclair, C. Somes, A.S. Studer, J.E. Tesdal, R. Thunell, J.Y. Terence Yang, The acceleration of oceanic denitrification during deglacial warming. Nat. Geosci. 6(7), 579–584 (2013)

    Google Scholar 

  • J.N. Galloway, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, P.A. Green, E.A. Holland, D.M. Karl, A.F. Michales, J.H. Porter, A.R. Townsend, C.J. Vorosmarty, Nitrogen cycles: past, present, and future. Biogeochemistry 70(153), 226 (2004)

    Google Scholar 

  • R.M. Garrels, A. Lerman, Coupling of the sedimentary sulfur and carbon cycles; an improved model. Am. J. Sci. 284(9), 989–1007 (1984)

    ADS  Google Scholar 

  • J. Garvin, R. Buick, A.D. Anbar, G.L. Arnold, A.J. Kaufman, Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323(5917), 1045–1048 (2009)

    ADS  Google Scholar 

  • B.C. Gill, T.W. Lyons, M.R. Saltzman, Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256(3–4), 156–173 (2007)

    Google Scholar 

  • B.C. Gill, T.W. Lyons, T.D. Frank, Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy. Geochim. Cosmochim. Acta 72(19), 4699–4711 (2008)

    ADS  Google Scholar 

  • L.V. Godfrey, P.G. Falkowski, The cycling and redox state of nitrogen in the archaean ocean. Nat. Geosci. 2(10), 725–729 (2009)

    ADS  Google Scholar 

  • T.P. Goldstein, Z. Aizenshtat, Thermochemical sulfate reduction a review. J. Therm. Anal. 42(1), 241–290 (1994)

    Google Scholar 

  • K.C. Grabb, C. Buchwald, C.M. Hansel, S.D. Wankel, A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide. Geochim. Cosmochim. Acta 196, 388–402 (2017)

    ADS  Google Scholar 

  • J. Granger, D.M. Sigman, M.F. Lehmann, P.D. Tortell, Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol. Oceanogr. 53(6), 2533–2545 (2008)

    ADS  Google Scholar 

  • E.M. Griffith, A. Paytan, Barite in the ocean - occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59(6), 1817–1835 (2012)

    ADS  Google Scholar 

  • N. Gruber, The marine nitrogen cycle: overview and challenges, in Nitrogen in the Marine Environment (Elsevier, Amsterdam, 2008), pp. 1–50

    Google Scholar 

  • A.P. Gumsley, K.R. Chamberlain, W. Bleeker, U. Söderlund, M.O. De Kock, E.R. Larsson, A. Bekker, Timing and tempo of the great oxidation event. Proc. Natl. Acad. Sci. USA 114(8), 1811–1816 (2017)

    ADS  Google Scholar 

  • K.S. Habicht, D.E. Canfield, J. Rethmeier, Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochim. Cosmochim. Acta 62(15), 2585–2595 (1998)

    ADS  Google Scholar 

  • K.S. Habicht, M. Gade, B. Thamdrup, P. Berg, D.E. Canfield, Calibration of sulfate levels in the Archean ocean. Science 298(5602), 2372–2374 (2002)

    ADS  Google Scholar 

  • I. Halevy, Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proc. Natl. Acad. Sci. 110(44), 17644–17649 (2013)

    ADS  Google Scholar 

  • I. Halevy, D.T. Johnston, D.P. Schrag, Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329(5988), 204–207 (2010)

    ADS  Google Scholar 

  • I. Halevy, S.E. Peters, W.W. Fischer, Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337(6092), 331–334 (2012)

    ADS  Google Scholar 

  • H.C.B. Hansen, C.B. Koch, H. Nancke-Krogh, O.K. Borggaard, J. Sørensen, Abiotic nitrate reduction to ammonium: key role of green rust. Environ. Sci. Technol. 30(6), 2053–2056 (1996)

    ADS  Google Scholar 

  • A.K. Hardison, C.K. Algar, A.E. Giblin, J.J. Rich, Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production. Geochim. Cosmochim. Acta 164, 146–160 (2015)

    ADS  Google Scholar 

  • C.E. Harman, A.A. Pavlov, D. Babikov, J.F. Kasting, Chain formation as a mechanism for mass-independent fractionation of sulfur isotopes in the Archean atmosphere. Earth Planet. Sci. Lett. 496, 238–247 (2018)

    ADS  Google Scholar 

  • D.L. Hartmann, A.M. Klein Tank, M. Rusticucci, L.V. Alexander, S. Brönnimann, Y.A.R. Charabi, F.J. Dentener, E.J. Dlugokencky, D.R. Easterling, A. Kaplan, B.J. Soden, P.W. Thorne, M. Wild, P. Zhai, Observations: atmosphere and surface, in Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013), pp. 159–254

    Google Scholar 

  • J.M. Hayes, Global methanotrophy of the Archean-proterozoic transition, in Early Life on Earth, Nobel Symposium No. 84 (Columbia University Press, New York, 1994), pp. 220–235

    Google Scholar 

  • J.M. Hayes, Fractionation of carbon and hydrogen isotopes in biosynthetic processes, in Stable Isotope Geochemistry, vol. 43 (2001), pp. 225–277

    Google Scholar 

  • J.M. Hayes, J.R. Waldbauer, The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 361(1470), 931–950 (2006)

    Google Scholar 

  • J.M. Hayes, H. Strauss, A.J. Kaufman, The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161(1), 103–125 (1999)

    ADS  Google Scholar 

  • J.D. Hays, J. Imbrie, N.J. Shackleton, Variations in the Earth’s Orbit: Pacemaker of the Ice Ages (1976)

    Google Scholar 

  • J. Heil, H. Vereecken, N. Brüggemann, A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur. J. Soil Sci. 67(1), 23–39 (2016)

    Google Scholar 

  • S.P. Hesselbo, D.R. Gröcke, H.C. Jenkyns, C.J. Bjerrum, P. Farrimond, H.S. Morgans Bell, O.R. Green, Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406(6794), 392–395 (2000)

    ADS  Google Scholar 

  • M.B. Higgins, R.S. Robinson, J.M. Husson, S.J. Carter, A. Pearson, Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+. Proc. Natl. Acad. Sci. USA 109(7), 2269–2274 (2012)

    ADS  Google Scholar 

  • K.U. Hinrichs, R.E. Summons, V. Orphan, S.P. Sylva, J.M. Hayes, Molecular and isotopic analysis of anaerobic methaneoxidizing communities in marine sediments. Org. Geochem. 31(12), 1685–1701 (2000)

    Google Scholar 

  • K.U. Hinrichs, J.M. Hayes, W. Bach, A.J. Spivackl, L.R. Hmelo, N.G. Holm, C.G. Johnson, S.P. Sylva, Biological formation of ethane and propane in the deep marine subsurface. Proc. Natl. Acad. Sci. USA 103(40), 14684–14689 (2006)

    ADS  Google Scholar 

  • M.P. Hoch, M.L. Fogel, D.L. Kirchman, Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnol. Oceanogr. 37(7), 1447–1459 (1992)

    ADS  Google Scholar 

  • M.S. Hodgskiss, P.W. Crockford, Y. Peng, B.A. Wing, T.J. Horner, A productivity collapse to end Earth’s great oxidation. Proc. Natl. Acad. Sci. USA 116(35), 17207–17212 (2019)

    ADS  Google Scholar 

  • P.F. Hoffman, The great oxidation and a siderian snowball Earth: MIF-S based correlation of paleoproterozoic glacial epochs. Chem. Geol. 362, 143–156 (2013)

    ADS  Google Scholar 

  • P.F. Hoffman, A.J. Kaufman, G.P. Halverson, D.P. Schrag, A neoproterozoic snowball Earth. Science 281(5381), 1342–1346 (1998)

    ADS  Google Scholar 

  • B.M. Hoffman, D. Lukoyanov, Z.Y. Yang, D.R. Dean, L.C. Seefeldt, Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114(8), 4041–4062 (2014)

    Google Scholar 

  • T. Höink, A. Lenardic, A.M. Jellinek, Earth’s thermal evolution with multiple convection modes: a Monte-Carlo approach. Phys. Earth Planet. Inter. 221, 22–26 (2013)

    ADS  Google Scholar 

  • H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, Princeton, 1984)

    Google Scholar 

  • H.D. Holland, The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 361(1470), 903–915 (2006)

    Google Scholar 

  • B.D. Holt, R. Kumar, P.T. Cunningham, Primary sulfates in atmospheric sulfates: estimation by oxygen isotope ratio measurements. Science 217(4554), 51–53 (1982)

    ADS  Google Scholar 

  • B. Hönisch, N.G. Hemming, D. Archer, M. Siddall, J.F. McManus, Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324(5934), 1551–1554 (2009)

    ADS  Google Scholar 

  • C.H. House, J.W. Schopf, K.D. McKeegan, C.D. Coath, Carbon Isotopic Composition of Individual Precambrian Microfossils. Geology 28(8), 707–710 (2000)

    ADS  Google Scholar 

  • E. Ingall, R. Jahnke, Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58(11), 2571–2575 (1994)

    ADS  Google Scholar 

  • G. Izon, A.L. Zerkle, I. Zhelezinskaia, J. Farquhar, R.J. Newton, S.W. Poulton, J.L. Eigenbrode, M.W. Claire, Multiple oscillations in Neoarchaean atmospheric chemistry. Earth Planet. Sci. Lett. 431, 264–273 (2015)

    ADS  Google Scholar 

  • G. Izon, A.L. Zerkle, K.H. Williford, J. Farquhar, S.W. Poulton, M.W. Claire, Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc. Natl. Acad. Sci. 114(13), E2571–E2579 (2017)

    ADS  Google Scholar 

  • O. Jagoutz, F.A. Macdonald, L. Royden, Low-latitude arc-continent collision as a driver for global cooling. Proc. Natl. Acad. Sci. USA 113(18), 4935–4940 (2016)

    ADS  Google Scholar 

  • J.P. Jasper, J.M. Hayes, A carbon isotope record of CO2 levels during the late quaternary. Nature 347(6292), 462–464 (1990)

    ADS  Google Scholar 

  • H.C. Jenkyns, Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11(3), Q03004 (2010)

    ADS  Google Scholar 

  • B. Johnson, C. Goldblatt, The nitrogen budget of Earth. Earth-Sci. Rev. 148, 150–173 (2015)

    ADS  Google Scholar 

  • D.T. Johnston, Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth-Sci. Rev. 106(1–2), 161–183 (2011)

    ADS  Google Scholar 

  • D.T. Johnston, J. Farquhar, B.A. Wing, A.J. Kaufman, D.E. Canfield, K.S. Habicht, Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am. J. Sci. 305(6-8 SPEC. ISS.), 645–660 (2005)

    ADS  Google Scholar 

  • D.T. Johnston, B.C. Gill, A. Masterson, E. Beirne, K.L. Casciotti, A.N. Knapp, W. Berelson, Placing an upper limit on cryptic marine sulphur cycling. Nature 513(7519), 530–533 (2014)

    ADS  Google Scholar 

  • B.B. Jørgensen, Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296(5858), 643–645 (1982)

    ADS  Google Scholar 

  • B.B. Jørgensen, A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249(4965), 152–154 (1990)

    ADS  Google Scholar 

  • B.B. Jørgensen, D.J. Des Marais, Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol. Lett. 38(3), 179–186 (1986)

    Google Scholar 

  • B.B. Jørgensen, A.J. Findlay, A. Pellerin, The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. 10, 849 (2019)

    Google Scholar 

  • C.K. Junium, M.A. Arthur, Nitrogen cycling during the Cretaceous, Cenomanian- Turonian Oceanic Anoxic Event II. Geochem. Geophys. Geosyst. 8(3), Q03002 (2007)

    ADS  Google Scholar 

  • C.K. Junium, M.A. Arthur, K.H. Freeman, Compound-specific \(\delta{15}\)N and chlorin preservation in surface sediments of the Peru Margin with implications for ancient bulk \(\delta^{15}\)N records. Geochim. Cosmochim. Acta 160, 306–318 (2015)

    ADS  Google Scholar 

  • C.K. Junium, A.J. Dickson, B.T. Uveges, Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nat. Commun. 9, 1 (2018)

    Google Scholar 

  • S. Kadoya, D.C. Catling, Constraints on hydrogen levels in the Archean atmosphere based on detrital magnetite. Geochim. Cosmochim. Acta 262, 207–219 (2019)

    ADS  Google Scholar 

  • M.J. Kampschreur, R. Kleerebezem, W.W. de Vet, M.C. Van Loosdrecht, Reduced iron induced nitric oxide and nitrous oxide emission. Water Res. 45(18), 5945–5952 (2011)

    Google Scholar 

  • A. Kampschulte, H. Strauss, The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 204(3–4), 255–286 (2004)

    ADS  Google Scholar 

  • A. Kampschulte, P. Bruckschen, H. Strauss, The sulphur isotopic composition of trace sulphates in carboniferous brachiopods: implications for coeval seawater, correlation with other geochemical cyles and isotope stratigraphy. Chem. Geol. 175(1–2), 149–173 (2001)

    ADS  Google Scholar 

  • J.A. Karhu, H.D. Holland, Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10), 867–870 (1996)

    ADS  Google Scholar 

  • A.J. Kaufman, A.H. Knoll, Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res. 73(1–4), 27–49 (1995)

    ADS  Google Scholar 

  • C.D. Keeling, The Suess effect: 13Carbon-14Carbon interrelations. Environ. Int. 2(4–6), 229–300 (1979)

    Google Scholar 

  • R.F. Keeling, S.C. Piper, M. Heimann, Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381(6579), 218–221 (1996)

    ADS  Google Scholar 

  • S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, S. Houweling, B. Josse, P.J. Fraser, P.B. Krummel, J.F. Lamarque, R.L. Langenfelds, C. Le Quéré, V. Naik, S. O’doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G.R. Van Der Werf, A. Voulgarakis, M. Van Weele, R.F. Weiss, J.E. Williams, G. Zeng, Three Decades of Global Methane Sources and Sinks (2013)

    Google Scholar 

  • J.L. Kirschvink, Late proterozoic low-latitude global glaciation: the snowball Earth, in The Proterozoic Biosphere: A Multidisciplinary Study, vol. 52, ed. by J.W. Schopf, C. Klein (1992), pp. 51–52, Chap. 2.3

    Google Scholar 

  • J.L. Kirschvink, R.E. Kopp, Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 363(1504), 2755–2765 (2008)

    Google Scholar 

  • J.L. Kirschvink, E.J. Gaidos, L.E. Bertani, N.J. Beukes, J. Gutzmer, L.N. Maepa, R.E. Steinberger, Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. USA 97(4), 1400–1405 (2000)

    ADS  Google Scholar 

  • N. Klueglein, A. Kappler, Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1 - questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11(2), 180–190 (2013)

    Google Scholar 

  • A.N. Knapp, The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3, 374 (2012)

    Google Scholar 

  • K. Knittel, A. Boetius, Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63(1), 311–334 (2009)

    Google Scholar 

  • M.C. Koehler, E.E. Stüeken, M.A. Kipp, R. Buick, A.H. Knoll, Spatial and temporal trends in precambrian nitrogen cycling: a mesoproterozoic offshore nitrate minimum. Geochim. Cosmochim. Acta 198, 315–337 (2017)

    ADS  Google Scholar 

  • K. Koop-Jakobsen, A.E. Giblin, The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments. Limnol. Oceanogr. 55(2), 789–802 (2010)

    ADS  Google Scholar 

  • R.E. Kopp, J.L. Kirschvink, I.A. Hilburn, C.Z. Nash, The paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102(32), 11131–11136 (2005)

    ADS  Google Scholar 

  • J. Korenaga, in Archean Geodynamics and the Thermal Evolution of Earth. Geophysical Monograph Series, vol. 164 (Blackwell Publishing Ltd., Oxford, 2006), pp. 7–32

    Google Scholar 

  • S. Kotelnikova, Microbial production and oxidation of methane in deep subsurface. Earth-Sci. Rev. 58(3–4), 367–395 (2002)

    ADS  Google Scholar 

  • B. Kraft, H.E. Tegetmeyer, R. Sharma, M.G. Klotz, T.G. Ferdelman, R.L. Hettich, J.S. Geelhoed, M. Strous, The environmental controls that govern the end product of bacterial nitrate respiration. Science 345(6197), 676–679 (2014)

    ADS  Google Scholar 

  • J. Krissansen-Totton, R. Buick, D.C. Catling, A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315(4), 275–316 (2015)

    ADS  Google Scholar 

  • J. Krissansen-Totton, S. Olson, D.C. Catling, Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4(1), eaao5747 (2018)

    ADS  Google Scholar 

  • P.P. Kumar, G.K. Manohar, S.S. Kandalgaonkar, Global distribution of nitric oxide produced by lightning and its seasonal variation. J. Geophys. Res. 100(D6), 11203–11208 (1995)

    ADS  Google Scholar 

  • L.R. Kump, M.E. Barley, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448(7157), 1033–1036 (2007)

    ADS  Google Scholar 

  • L.R. Kump, R.M. Garrels, Modeling atmospheric O2 in the global sedimentary redox cycle. Am. J. Sci. 286(5), 337–360 (1986)

    ADS  Google Scholar 

  • L.R. Kump, C. Junium, M.A. Arthur, A. Brasier, A. Fallick, V. Melezhik, A. Lepland, A.E. Črne, G. Luo, Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science 334(6063), 1694–1696 (2011)

    ADS  Google Scholar 

  • M. Kusakabe, B.W. Robinson, Oxygen and sulfur isotope equilibria in the BaSO4-HSO4-H2O system from 110 to 350C and applications. Geochim. Cosmochim. Acta 41(8), 1033–1040 (1977)

    ADS  Google Scholar 

  • M.M. Kuypers, Y. van Breugel, S. Schouten, E. Erba, J.S. Damsté, N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32(10), 853–856 (2004)

    ADS  Google Scholar 

  • T.A. Laakso, D.P. Schrag, A small marine biosphere in the proterozoic. Geobiology 17(2), 161–171 (2019)

    Google Scholar 

  • H. Lammer, A.L. Zerkle, S. Gebauer, N. Tosi, L. Noack, M. Scherf, E. Pilat-Lohinger, M. Güdel, J.L. Grenfell, M. Godolt, A. Nikolaou, Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26(1), 2 (2018)

    ADS  Google Scholar 

  • M. Laneuville, M. Kameya, H.J. Cleaves, Earth without life: a systems model of a global abiotic nitrogen cycle. Astrobiology 18(7), 897–914 (2018)

    ADS  Google Scholar 

  • W.D. Leavitt, I. Halevy, A.S. Bradley, D.T. Johnston, Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc. Natl. Acad. Sci. USA 110(28), 11244–11249 (2013)

    ADS  Google Scholar 

  • C.C.-W. Lee, M.H. Thiemens, The \(\delta^{17}\)O and \(\delta^{18}\)O measurements of atmospheric sulfate from a coastal and high Alpine region: a mass-independent isotopic anomaly. J. Geophys. Res., Atmos. 106(D15), 17359–17373 (2001)

    ADS  Google Scholar 

  • H. Lee, J.D. Muirhead, T.P. Fischer, C.J. Ebinger, S.A. Kattenhorn, Z.D. Sharp, G. Kianji, Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9(2), 145–149 (2016)

    ADS  Google Scholar 

  • C.-T.A. Lee, H. Jiang, R. Dasgupta, M. Torres, A framework for understanding whole-Earth carbon cycling, in Deep Carbon (Cambridge University Press, Cambridge, 2019), pp. 313–357

    Google Scholar 

  • N. Lehnert, H.T. Dong, J.B. Harland, A.P. Hunt, C.J. White, Reversing nitrogen fixation. Nat. Rev. Chem. 2(10), 278–289 (2018)

    Google Scholar 

  • S.L. Lewis, M.A. Maslin, Defining the Anthropocene. Nature 519(7542), 171–180 (2015)

    ADS  Google Scholar 

  • G.N. Lewis, M. Randall, Thermodynamics and the Free Energy of Chemical Substances (McGraw-Hill, New York, 1923)

    Google Scholar 

  • L.E. Lisiecki, M.E. Raymo, A Pliocene-Pleistocene stack of 57 globally distributed benthic \(\delta \)18O records. Paleoceanography 20(1), 1–17 (2005)

    Google Scholar 

  • P. Liu, C.E. Harman, J.F. Kasting, Y. Hu, J. Wang, Can organic haze and O2 plumes explain patterns of sulfur mass-independent fractionation during the Archean? Earth Planet. Sci. Lett. 526, 115767 (2019)

    Google Scholar 

  • R.M. Lloyd, Oxygen isotope behavior in the sulfate-water system. J. Geophys. Res. 73(18), 6099–6110 (1968)

    ADS  Google Scholar 

  • G. Luo, S. Ono, N.J. Beukes, D.T. Wang, S. Xie, R.E. Summons, Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2(5), 1–10 (2016)

    Google Scholar 

  • M. Luo, Z.Q. Chen, G.R. Shi, X. Feng, H. Yang, Y. Fang, Y. Li, Microbially induced sedimentary structures (MISSs) from the Lower Triassic Kockatea Formation, northern Perth Basin, Western Australia: Palaeoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 236–247 (2019)

    Google Scholar 

  • G.W. Luther, B. Sundby, B.L. Lewis, P.J. Brendel, N. Silverberg, Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim. Cosmochim. Acta 61(19), 4043–4052 (1997)

    ADS  Google Scholar 

  • D. Lüthi, M. Le Floch, B. Bereiter, T. Blunier, J.M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, T.F. Stocker, High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453(7193), 379–382 (2008)

    ADS  Google Scholar 

  • J.R. Lyons, Mass-independent fractionation of sulfur isotopes by isotope-selective photodissociation of so2. Geophys. Res. Lett. 34(22), L22811 (2007)

    ADS  Google Scholar 

  • T.W. Lyons, C.T. Reinhard, N.J. Planavsky, The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488), 307–315 (2014)

    ADS  Google Scholar 

  • F.A. Macdonald, N.L. Swanson-Hysell, Y. Park, L. Lisiecki, O. Jagoutz, Arc-continent collisions in the tropics set Earth’s climate state. Science 364(6436), 181–184 (2019)

    ADS  Google Scholar 

  • S.A. Macko, M.L. Fogel, P. Hare, T. Hoering, Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem. Geol., Isot. Geosci. Sect. 65(1), 79–92 (1987)

    Google Scholar 

  • C. Magnabosco, L.H. Lin, H. Dong, M. Bomberg, W. Ghiorse, H. Stan-Lotter, K. Pedersen, T.L. Kieft, E. van Heerden, T.C. Onstott, The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11(10), 707–717 (2018)

    ADS  Google Scholar 

  • N. Mahmoudi, S.R. Beaupré, A.D. Steen, A. Pearson, Sequential bioavailability of sedimentary organic matter to heterotrophic bacteria. Environ. Microbiol. 19(7), 2629–2644 (2017)

    Google Scholar 

  • B.D. Marino, M.B. McElroy, R.J. Salawitch, W.G. Spaulding, Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357(6378), 461–466 (1992)

    ADS  Google Scholar 

  • W. Martens-Habbena, W. Qin, R.E. Horak, H. Urakawa, A.J. Schauer, J.W. Moffett, E.V. Armbrust, A.E. Ingalls, A.H. Devol, D.A. Stahl, The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ. Microbiol. 17(7), 2261–2274 (2015)

    Google Scholar 

  • E. Martin, I. Bindeman, Mass-independent isotopic signatures of volcanic sulfate from three supereruption ash deposits in Lake Tecopa, California. Earth Planet. Sci. Lett. 282(1), 102–114 (2009)

    ADS  Google Scholar 

  • A.P. Martin, D.J. Condon, A.R. Prave, A. Lepland, A Review of Temporal Constraints for the Palaeoproterozoic Large, Positive Carbonate Carbon Isotope Excursion (the Lomagundi-Jatuli Event). Earth-Sci. Rev. 127, 242–261 (2013)

    ADS  Google Scholar 

  • E. Mason, M. Edmonds, A.V. Turchyn, Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357(6348), 290–294 (2017)

    ADS  Google Scholar 

  • A.L. Masterson, J. Farquhar, B.A. Wing, Sulfur mass-independent fractionation patterns in the broadband uv photolysis of sulfur dioxide: pressure and third body effects. Earth Planet. Sci. Lett. 306(3–4), 253–260 (2011)

    ADS  Google Scholar 

  • A.L. Masterson, B.A. Wing, A. Paytan, J. Farquhar, D.T. Johnston, The minor sulfur isotope composition of Cretaceous and Cenozoic seawater sulfate. Paleoceanography 31(6), 779–788 (2016)

    ADS  Google Scholar 

  • H.L. McClelland, J. Bruggeman, M. Hermoso, R.E. Rickaby, The origin of carbon isotope vital effects in coccolith calcite. Nat. Commun. 8, 1–16 (2017)

    Google Scholar 

  • T.M. McCollom, E.L. Shock, Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61(20), 4375–4391 (1997)

    ADS  Google Scholar 

  • W.F. McDonough, S.s. Sun, The composition of the Earth. Chem. Geol. 120(3–4), 223–253 (1995)

    ADS  Google Scholar 

  • N.R. McKenzie, B.K. Horton, S.E. Loomis, D.F. Stockli, N.J. Planavsky, C.T.A. Lee, Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352(6284), 444–447 (2016)

    ADS  Google Scholar 

  • D.L. McRose, X. Zhang, A.M. Kraepiel, F.M. Morel, Diversity and activity of alternative nitrogenases in sequenced genomes and coastal environments. Front. Microbiol. 8, 267 (2017)

    Google Scholar 

  • A.J. Medford, M.C. Hatzell, Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal. 7(4), 2624–2643 (2017)

    Google Scholar 

  • M.P. Mehta, J.A. Baross, Nitrogen fixation at 92C by a hydrothermal vent archaeon. Science 314(5806), 1783–1786 (2006)

    ADS  Google Scholar 

  • E.D. Melton, E.D. Swanner, S. Behrens, C. Schmidt, A. Kappler, The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12(12), 797–808 (2014)

    Google Scholar 

  • K.M. Meyer, L.R. Kump, Oceanic Euxinia in Earth history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36(1), 251–288 (2008)

    ADS  Google Scholar 

  • P.J. Mickler, L.A. Stern, J.L. Banner, Large kinetic isotope effects in modern speleothems. Bull. Geol. Soc. Am. 118(1–2), 65–81 (2006)

    Google Scholar 

  • J.J. Middelburg, Marine Carbon Biogeochemistry. Springer Briefs in Earth System Sciences (Springer, Cham, 2019)

    Google Scholar 

  • J.V. Mills, G. Antler, A.V. Turchyn, Geochemical evidence for cryptic sulfur cycling in salt Marsh sediments. Earth Planet. Sci. Lett. 453, 23–32 (2016)

    ADS  Google Scholar 

  • M. Minagawa, E. Wada, Nitrogen isotope ratios of red tide organisms in the East China Sea: a characterization of biological nitrogen fixation. Mar. Chem. 19(3), 245–259 (1986)

    Google Scholar 

  • K.D. Monson, J.M. Hayes, Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Saccharomyces cerevisiae. Isotopic fractionations in lipid synthesis as evidence for peroxisomal regulation. J. Biol. Chem. 257(10), 5568–5575 (1982)

    Google Scholar 

  • M.A. Moran, B.P. Durham, Sulfur metabolites in the pelagic ocean. Nat. Rev. Microbiol. 17(11), 665–678 (2019)

    Google Scholar 

  • R.D. Müller, M. Sdrolias, C. Gaina, W.R. Roest, Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9(4), 1–19 (2008)

    Google Scholar 

  • T. Murakami, B. Sreenivas, S.D. Sharma, H. Sugimori, Quantification of atmospheric oxygen levels during the paleoproterozoic using paleosol compositions and iron oxidation kinetics. Geochim. Cosmochim. Acta 75(14), 3982–4004 (2011)

    ADS  Google Scholar 

  • R. Navarro-González, M.J. Molina, L.T. Molina, Nitrogen fixation by volcanic lightning in the early Earth. Geophys. Res. Lett. 25(16), 3123–3126 (1998)

    ADS  Google Scholar 

  • R. Navarro-González, C.P. McKay, D.N. Mvondo, A possible nitrogen crisis for archaean life due to reduced nitrogen fixation by lightning. Nature 412(6842), 61–64 (2001)

    ADS  Google Scholar 

  • A. Neftel, H. Oeschger, J. Schwander, B. Stauffer, R. Zumbrunn, Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature 295(5846), 220–223 (1982)

    ADS  Google Scholar 

  • D.W. Nelson, J.M. Bremner, Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 2(3), 203–204 (1970)

    Google Scholar 

  • E. Noor, A. Flamholz, W. Liebermeister, A. Bar-Even, R. Milo, A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. FEBS Lett. 587(17), 2772–2777 (2013)

    Google Scholar 

  • T.F. Oliveira, C. Vonrhein, P.M. Matias, S.S. Venceslau, I.A. Pereira, M. Archer, The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J. Biol. Chem. 283(49), 34141–34149 (2008)

    Google Scholar 

  • S. Ono, Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth’s atmosphere. Annu. Rev. Earth Planet. Sci. 45, 301–329 (2017)

    ADS  Google Scholar 

  • S. Ono, W.C. Shanks, O.J. Rouxel, D. Rumble, S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim. Cosmochim. Acta 71(5), 1170–1182 (2007)

    ADS  Google Scholar 

  • S. Ono, A.R. Whitehill, J.R. Lyons, Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis. J. Geophys. Res., Atmos. 118(5), 2444–2454 (2013)

    ADS  Google Scholar 

  • V.J. Orphan, C.H. House, K.U. Hinrichs, K.D. McKeegan, E.F. DeLong, Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA 99(11), 7663–7668 (2002)

    ADS  Google Scholar 

  • C.J. Ottley, W. Davison, W.M. Edmunds, Chemical catalysis of nitrate reduction by iron(II). Geochim. Cosmochim. Acta 61(9), 1819–1828 (1997)

    ADS  Google Scholar 

  • M. Pagani, K.H. Freeman, M.A. Arthur, Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285(5429), 876–879 (1999)

    Google Scholar 

  • M. Pagani, J.C. Zachos, K.H. Freeman, B. Tipple, S. Bohaty, Atmospheric science: marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309(5734), 600–603 (2005)

    ADS  Google Scholar 

  • M. Pagani, K. Caldeira, D. Archer, J.C. Zachos An Ancient Carbon Mystery. Science 341(5805), 1556–1557 (2006)

    Google Scholar 

  • M. Pagani, M. Huber, Z. Liu, S.M. Bohaty, J. Henderiks, W. Sijp, S. Krishnan, R.M. DeConto, The role of carbon dioxide during the onset of Antarctic glaciation. Science 334(6060), 1261–1264 (2011)

    ADS  Google Scholar 

  • H. Palme, H. O’Neill, Cosmochemical estimates of mantle composition, in Treatise on Geochemistry, vol. 3, 2nd edn. (2013), pp. 1–39

    Google Scholar 

  • C.A. Partin, P.M. Sadler, Slow net sediment accumulation sets snowball Earth apart from all younger glacial episodes. Geology 44(12), 1019–1022 (2016)

    ADS  Google Scholar 

  • V. Pasquier, P. Sansjofre, M. Rabineau, S. Revillon, J. Houghton, D.A. Fike, Pyrite sulfur isotopes reveal glacial-interglacial environmental changes. Proc. Natl. Acad. Sci. USA 114(23), 5941–5945 (2017)

    ADS  Google Scholar 

  • A.A. Pavlov, J.F. Kasting, Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2(1), 27–41 (2002)

    ADS  Google Scholar 

  • A.A. Pavlov, J.F. Kasting, L.L. Brown, K.A. Rages, R. Freedman, Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res., Planets 105(E5), 11981–11990 (2000)

    ADS  Google Scholar 

  • A. Paytan, M. Kastner, D. Campbell, M.H. Thiemens, Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282(5393), 1459–1462 (1998)

    Google Scholar 

  • A. Pellerin, G. Antler, S.A. Holm, A.J. Findlay, P.W. Crockford, A.V. Turchyn, B.B. Jørgensen, K. Finster, Large sulfur isotope fractionation by bacterial sulfide oxidation. Sci. Adv. 5(7), eaaw1480 (2019)

    ADS  Google Scholar 

  • I.A. Pereira, A.R. Ramos, F. Grein, M.C. Marques, S.M. da Silva, S.S. Venceslau, A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front. Microbiol. 2, 69 (2011)

    Google Scholar 

  • K.E. Peters, R.E. Sweeney, I.R. Kaplan, Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr. 23(4), 598–604 (1978)

    ADS  Google Scholar 

  • N.J. Planavsky, P. McGoldrick, C.T. Scott, C. Li, C.T. Reinhard, A.E. Kelly, X. Chu, A. Bekker, G.D. Love, T.W. Lyons, Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477(7365), 448–451 (2011)

    ADS  Google Scholar 

  • N.J. Planavsky, A. Bekker, A. Hofmann, J.D. Owens, T.W. Lyons, Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl. Acad. Sci. USA 109(45), 18300–18305 (2012)

    ADS  Google Scholar 

  • B.N. Popp, E.A. Laws, R.R. Bidigare, J.E. Dore, K.L. Hanson, S.G. Wakeham, Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62(1), 69–77 (1998)

    ADS  Google Scholar 

  • D. Postma, Kinetics of nitrate reduction by detrital Fe(II)-silicates. Geochim. Cosmochim. Acta 54(3), 903–908 (1990)

    ADS  Google Scholar 

  • S.W. Poulton, P.W. Fralick, D.E. Canfield, Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3(7), 486–490 (2010)

    ADS  Google Scholar 

  • M.J. Prather, C.D. Holmes, J. Hsu, Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 39(9), L09803 (2012)

    ADS  Google Scholar 

  • T.M. Present, G. Paris, A. Burke, W.W. Fischer, J.F. Adkins, Large carbonate associated sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata. Earth Planet. Sci. Lett. 432, 187–198 (2015)

    ADS  Google Scholar 

  • R. Rabus, T.A. Hansen, F. Widdel, Dissimilatory sulfate- and sulfur-reducing prokaryotes, in The Prokaryotes: Prokaryotic Physiology and Biochemistry (Springer, Berlin, 2013), pp. 309–404

    Google Scholar 

  • S.W. Ragsdale, Stealth reactions driving carbon fixation new twists to bacterial metabolic pathways that contribute to the global carbon cycle. Science 359(6375), 517–518 (2018)

    ADS  Google Scholar 

  • V.A. Rakov, M.A. Uman, Lightning: Physics and Effects (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  • S. Rakshit, C.J. Matocha, M.S. Coyne, Nitrite reduction by siderite. Soil Sci. Soc. Am. J. 72(4), 1070–1077 (2008)

    ADS  Google Scholar 

  • B. Rasmussen, A. Bekker, I.R. Fletcher, Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. Earth Planet. Sci. Lett. 382, 173–180 (2013)

    ADS  Google Scholar 

  • G.H. Rau, M.A. Arthur, W.E. Dean, 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry. Earth Planet. Sci. Lett. 82(3–4), 269–279 (1987)

    ADS  Google Scholar 

  • G.H. Rau, U. Riebesell, D. Wolf-Gladrow, A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Mar. Ecol. Prog. Ser. 133(1–3), 275–285 (1996)

    ADS  Google Scholar 

  • M.R. Raven, A.L. Sessions, J.F. Adkins, R.C. Thunell, Rapid organic matter sulfurization in sinking particles from the Cariaco Basin water column. Geochim. Cosmochim. Acta 190, 175–190 (2016)

    ADS  Google Scholar 

  • M.R. Raven, D.A. Fike, M.L. Gomes, S.M. Webb, A.S. Bradley, H.L.O. McClelland, Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Nat. Commun. 9, 3409 (2018)

    ADS  Google Scholar 

  • W.S. Reeburgh, Oceanic Methane Biogeochemistry (2007)

    Google Scholar 

  • H. Ren, D.M. Sigman, A.N. Meckler, B. Plessen, R.S. Robinson, Y. Rosenthal, G.H. Haug, Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323(5911), 244–248 (2009)

    Google Scholar 

  • V.C. Rennie, A.V. Turchyn, The preservation of \(\delta^{34}\mathrm{S}_{\mathrm{SO}_{4}}\) and \(\delta^{18}\mathrm{O}_{\mathrm{SO}_{4}}\) in carbonate-associated sulfate during marine diagenesis: a 25 Myr test case using marine sediments. Earth Planet. Sci. Lett. 395, 13–23 (2014)

    ADS  Google Scholar 

  • V.C. Rennie, G. Paris, A.L. Sessions, S. Abramovich, A.V. Turchyn, J.F. Adkins, Cenozoic record of \(\delta^{34}\)S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide burial. Nat. Geosci. 11(10), 761–765 (2018)

    ADS  Google Scholar 

  • D. Rickard, G.W. Luther, Chemistry of iron sulfides. Chem. Rev. 107(2), 514–562 (2007)

    Google Scholar 

  • B.A. Ridley, J.E. Dye, J.G. Walega, J. Zheng, F.E. Grahek, W. Rison, On the production of active nitrogen by thunderstorms over New Mexico. J. Geophys. Res., Atmos. 101(15), 20985–21005 (1996)

    ADS  Google Scholar 

  • A.L. Robertson, J. Roadt, I. Halevy, J.F. Kasting, Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9(4), 313–320 (2011)

    Google Scholar 

  • A. Robock, Volcanic eruptions and climate. Rev. Geophys. 38(2), 191–219 (2000)

    ADS  Google Scholar 

  • A.B. Romero, M.H. Thiemens, Mass-independent sulfur isotopic compositions in present-day sulfate aerosols. J. Geophys. Res., Atmos. 108(D16), 4524 (2003)

    ADS  Google Scholar 

  • C.V. Rose, S.M. Webb, M. Newville, A. Lanzirotti, J.A. Richardson, N.J. Tosca, J.G. Catalano, A.S. Bradley, D.A. Fike, Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates. Geology 47(9), 833–837 (2019)

    ADS  Google Scholar 

  • D.H. Rothman, J.M. Hayes, R.E. Summons, Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. USA 100(14), 8124–8129 (2003)

    ADS  Google Scholar 

  • M.J. Russell, A.J. Hall, W. Martin, Serpentinization as a source of energy at the origin of life. Geobiology 8(5), 355–371 (2010)

    Google Scholar 

  • Z. Sade, I. Halevy, New constraints on kinetic isotope effects during CO2(aq) hydration and hydroxylation: revisiting theoretical and experimental data. Geochim. Cosmochim. Acta 214, 246–265 (2017)

    ADS  Google Scholar 

  • G. Saleh, A.R. Oganov, Novel stable compounds in the C-H-O ternary system at high pressure. Sci. Rep. 6, 32486 (2016)

    ADS  Google Scholar 

  • V.A. Samarkin, M.T. Madigan, M.W. Bowles, K.L. Casciotti, J.C. Priscu, C.P. McKay, S.B. Joye, Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 3(5), 341–344 (2010)

    ADS  Google Scholar 

  • A.A. Santos, S.S. Venceslau, F. Grein, W.D. Leavitt, C. Dahl, D.T. Johnston, I.A.C. Pereira, A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science 350(6267), 1541–1545 (2015)

    ADS  Google Scholar 

  • M. Saunois, A.R. Stavert, B. Poulter, P. Bousquet, J.G. Canadell, R.B. Jackson, P.A. Raymond, E.J. Dlugokencky, S. Houweling, P.K. Patra, P. Ciais, V.K. Arora, D. Bastviken, P. Bergamaschi, D.R. Blake, G. Brailsford, L. Bruhwiler, K.M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P.M. Crill, K. Covey, C.L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M.I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K.M. Jensen, F. Joos, T. Kleinen, P.B. Krummel, R.L. Langenfelds, G.G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K.C. McDonald, J. McNorton, P.A. Miller, J.R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O’Doherty, R.J. Parker, C. Peng, S. Peng, G.P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W.J. Riley, J.A. Rosentreter, A. Segers, I.J. Simpson, H. Shi, S.J. Smith, L.P. Steele, B.F. Thornton, H. Tian, Y. Tohjima, F.N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T.S. Weber, M. van Weele, G.R. van der Werf, R.F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu, Q. Zhuang, The global methane budget 2000–2017. Earth Syst. Sci. Data 12(3), 1561–1623 (2020)

    ADS  Google Scholar 

  • J. Savarino, A. Romero, J. Cole-Dai, S. Bekki, M. Thiemens, UV-induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. Geophys. Res. Lett. 30(21), 2131 (2003)

    ADS  Google Scholar 

  • E.A. Schauble, Applying stable isotope fractionation theory to new systems. Rev. Mineral. Geochem. 55, 65–111 (2004)

    Google Scholar 

  • S.O. Schlanger, H.C. Jenkyns, Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnb. 55(3–4), 179–184 (1976)

    Google Scholar 

  • M. Schobben, B. van de Schootbrugge, Increased stability in carbon isotope records reflects emerging complexity of the biosphere. Front. Earth Sci. 7, 87 (2019)

    ADS  Google Scholar 

  • S. Schouten, H.M. Van Kaam-Peters, W.I.C. Rijpstra, M. Schoell, J.S. Sinninghe Damste, Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon. Am. J. Sci. 300(1), 1–22 (2000)

    ADS  Google Scholar 

  • D.P. Schrag, J.A. Higgins, F.A. Macdonald, D.T. Johnston, Authigenic carbonate and the history of the global carbon cycle. Science 339(6119), 540–543 (2013)

    ADS  Google Scholar 

  • S. Schwietzke, O.A. Sherwood, L.M. Bruhwiler, J.B. Miller, G. Etiope, E.J. Dlugokencky, S.E. Michel, V.A. Arling, B.H. Vaughn, J.W. White, P.P. Tans, Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538(7623), 88–91 (2016)

    ADS  Google Scholar 

  • A. Sclafani, L. Palmisano, M. Schiavello, N2 photoreduction and phenol and nitrophenol isomers photooxidation as examples of heterogeneous photocatalytic reactions. Res. Chem. Intermed. 18(2), 211–226 (1993)

    Google Scholar 

  • S.P. Seitzinger, J.A. Harrison, E. Dumont, A.H.W. Beusen, A.F. Bouwman, Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of global nutrient export from watersheds (NEWS) models and their application. Glob. Biogeochem. Cycles 19(4), GB4S05 (2005)

    Google Scholar 

  • N.J. Shackleton, Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6(3–4), 183–190 (1987)

    ADS  Google Scholar 

  • L. Shawar, I. Halevy, W. Said-Ahmad, S. Feinstein, V. Boyko, A. Kamyshny, A. Amrani, Dynamics of pyrite formation and organic matter sulfurization in organic-rich carbonate sediments. Geochim. Cosmochim. Acta 241, 219–239 (2018)

    ADS  Google Scholar 

  • Y. Shen, R. Buick, D.E. Canfield, Isotopic evidence for microbial sulphate reduction in the early archaean era. Nature 410(6824), 77–81 (2001)

    ADS  Google Scholar 

  • Y. Shen, J. Farquhar, A. Masterson, A.J. Kaufman, R. Buick, Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279(3–4), 383–391 (2009)

    ADS  Google Scholar 

  • S.M. Sievert, C. Vetriani, Chemoautotrophy at deep-sea vents, past, present, and future. Oceanography 25(1), 218–233 (2012)

    Google Scholar 

  • D.M. Sigman, E.A. Boyle, Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806), 859–869 (2000)

    ADS  Google Scholar 

  • D.M. Sigman, K.L. Karsh, K.L. Casciotti, Ocean process tracers: nitrogen isotopes in the ocean, in Encyclopedia of Ocean Sciences, ed. by S. Edition, J.H. Steele (Academic Press, Oxford, 2009), pp. 40–54

    Google Scholar 

  • M.S. Sim, T. Bosak, S. Ono, Large sulfur isotope fractionation does not require disproportionation. Science 333(6038), 74–77 (2011)

    ADS  Google Scholar 

  • M.S. Sim, S. Ono, T. Bosak, Effects of iron and nitrogen limitation on sulfur isotope fractionation during microbial sulfate reduction. Appl. Environ. Microbiol. 78(23), 8368–8376 (2012)

    Google Scholar 

  • J.S. Sinninghe Damste, J.W. De Leeuw, Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org. Geochem. 16(4–6), 1077–1101 (1990)

    Google Scholar 

  • J.S. Sinninghe Damsté, M.D. Kok, J. Köster, S. Schouten, Sulfurized carbohydrates: an important sedimentary sink for organic carbon? Earth Planet. Sci. Lett. 164(1–2), 7–13 (1998)

    ADS  Google Scholar 

  • R. Sirevåg, B.B. Buchanan, J.A. Berry, J.H. Troughton, Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112(1), 35–38 (1977)

    Google Scholar 

  • S.P. Slotznick, W.W. Fischer, Examining Archean methanotrophy. Earth Planet. Sci. Lett. 441, 52–59 (2016)

    ADS  Google Scholar 

  • L.E. Snyder, D. Buhl, B. Zuckerman, P. Palmer, Microwave detection of interstellar formaldehyde. Phys. Rev. Lett. 22(13), 679–681 (1969)

    ADS  Google Scholar 

  • E. Sofen, B. Alexander, S. Kunasek, The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core \(\Delta\)17O(SO42-). Atmos. Chem. Phys. 11, 3565–3578 (2011)

    ADS  Google Scholar 

  • E.D. Sofen, B. Alexander, E.J. Steig, M.H. Thiemens, S.A. Kunasek, H.M. Amos, A.J. Schauer, M.G. Hastings, J. Bautista, T.L. Jackson, L.E. Vogel, J.R. Mcconnell, D.R. Pasteris, E.S. Saltzman, WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere. Atmos. Chem. Phys. 14(11), 5749–5769 (2014)

    ADS  Google Scholar 

  • R.M. Soo, J. Hemp, P. Hugenholtz, Evolution of photosynthesis and aerobic respiration in the cyanobacteria. Free Radic. Biol. Med. 140, 200–205 (2019)

    Google Scholar 

  • J. Sørensen, L. Thorling, Stimulation by lepidocrocite (7-FeOOH) of Fe(II)-dependent nitrite reduction. Geochim. Cosmochim. Acta 55(5), 1289–1294 (1991)

    ADS  Google Scholar 

  • R. Spahni, R. Wania, L. Neef, M. Van Weele, I. Pison, P. Bousquet, C. Frankenberg, P.N. Foster, F. Joos, I.C. Prentice, P. Van Velthoven, Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8(6), 1643–1665 (2011)

    ADS  Google Scholar 

  • C.L. Stanton, C.T. Reinhard, J.F. Kasting, N.E. Ostrom, J.A. Haslun, T.W. Lyons, J.B. Glass, Nitrous oxide from chemodenitrification: a possible missing link in the proterozoic greenhouse and the evolution of aerobic respiration. Geobiology 16(6), 597–609 (2018)

    Google Scholar 

  • C.J. Still, J.A. Berry, G.J. Collatz, R.S. DeFries, Global distribution of C3 and C4 vegetation: carbon cycle implications. Glob. Biogeochem. Cycles 17(1), 6-1–6-14 (2003)

    ADS  Google Scholar 

  • D.A. Stolper, C.B. Keller, A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553(7688), 323–327 (2018)

    ADS  Google Scholar 

  • K.L. Straub, M. Benz, B. Schink, F. Widdel, Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62(4), 1458–1460 (1996)

    Google Scholar 

  • H. Strauss, D.J. Des Marais, J.M. Hayers, R.E. Summons, Concentrations of organic carbon and maturities and elemental compositions of kerogens, in The Proterozoic Biosphere, a Multidisciplinary Study (1992), pp. 95–101

    Google Scholar 

  • T.O. Strohm, B. Griffin, W.G. Zumft, B. Schink, Growth yields in bacterial denitrification and nitrate ammonification. Appl. Environ. Microbiol. 73(5), 1420–1424 (2007)

    Google Scholar 

  • E.E. Stüeken, R. Buick, B.M. Guy, M.C. Koehler, Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520(7549), 666–669 (2015a)

    ADS  Google Scholar 

  • E.E. Stüeken, R. Buick, A.J. Schauer, Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015b)

    ADS  Google Scholar 

  • E.E. Stüeken, M.A. Kipp, M.C. Koehler, R. Buick, The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Sci. Rev. 160, 220–239 (2016)

    ADS  Google Scholar 

  • E.E. Stüeken, J. Zaloumis, J. Meixnerová, R. Buick, Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. Geochim. Cosmochim. Acta 217, 80–94 (2017)

    ADS  Google Scholar 

  • E.E. Stüeken, S.M. Som, M. Claire, S. Rugheimer, M. Scherf, L. Sproß, N. Tosi, Y. Ueno, H. Lammer, Mission to planet Earth: the first two billion years. Space Sci. Rev. 216(2), 31 (2020)

    ADS  Google Scholar 

  • R.E. Summons, P.D. Franzmann, P.D. Nichols, Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org. Geochem. 28(7–8), 465–475 (1998)

    Google Scholar 

  • P.K. Swart, Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle. Proc. Natl. Acad. Sci. USA 105(37), 13741–13745 (2008)

    ADS  Google Scholar 

  • P.K. Swart, The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62(5), 1233–1304 (2015)

    Google Scholar 

  • F. Tabataba-Vakili, J.L. Grenfell, J.-M. Grießmeier, H. Rauer, Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. Astron. Astrophys. 585, A96 (2016)

    ADS  Google Scholar 

  • C. Tamocai, J.G. Canadell, E.A. Schuur, P. Kuhry, G. Mazhitova, S. Zimov, Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23(2), GB2023 (2009)

    ADS  Google Scholar 

  • G.G. Tcherkez, G.D. Farquhar, T.J. Andrews, Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc. Natl. Acad. Sci. USA 103(19), 7246–7251 (2006)

    ADS  Google Scholar 

  • K. Tennakone, J.M. Bandara, C.T. Thaminimulla, W.D. Jayatilake, U.S. Ketipearachchi, O.A. Ileperuma, M.K. Priyadarshana, Photoreduction of dinitrogen to ammonia by ultrafine particles of Fe(O)OH formed by photohydrolysis of Iron(II) bicarbonate. Langmuir 7(10), 2166–2168 (1991)

    Google Scholar 

  • B. Thamdrup, Bacterial manganese and iron reduction in aquatic sediments, in Advances in Microbial Ecology, ed. by B. Schink (Springer, Berlin, 2000), pp. 41–84

    Google Scholar 

  • B. Thamdrup, K. Finster, J.W. Hansen, F. Bak, Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl. Environ. Microbiol. 59(1), 101–108 (1993)

    Google Scholar 

  • B. Thamdrup, K. Finster, H. Fossing, J.W. Hansen, B.B. Jørgensen, Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry. Geochim. Cosmochim. Acta 58(1), 67–73 (1994)

    ADS  Google Scholar 

  • M.H. Thiemens, History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 34, 217–262 (2006)

    ADS  Google Scholar 

  • C. Thomazo, M. Ader, P. Philippot, Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9(2), 107–120 (2011)

    Google Scholar 

  • M.M. Tice, D.R. Lowe, Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431(7008), 549–552 (2004)

    ADS  Google Scholar 

  • B. Tissot, D. Welte, Principles of Stable Isotope Distribution (Springer, Berlin, 1984)

    Google Scholar 

  • C. Tornabene, R.C. Martindale, X.T. Wang, M.F. Schaller, Detecting photosymbiosis in fossil scleractinian corals. Sci. Rep. 7(1), 9465 (2017)

    ADS  Google Scholar 

  • A.V. Turchyn, O. Sivan, D. Schrag, Oxygen isotopic composition of sulfate in deep sea pore fluid: evidence for rapid sulfur cycling. Geochim. Cosmochim. Acta 70(18), A660 (2006)

    ADS  Google Scholar 

  • A.V. Turchyn, V. Brüchert, T.W. Lyons, G.S. Engel, N. Balci, D.P. Schrag, B. Brunner, Kinetic oxygen isotope effects during dissimilatory sulfate reduction: a combined theoretical and experimental approach. Geochim. Cosmochim. Acta 74(7), 2011–2024 (2010)

    ADS  Google Scholar 

  • P. Van Cappellen, E.D. Ingall, Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271(5248), 493–496 (1996)

    ADS  Google Scholar 

  • E.M. van den Berg, J.L. Rombouts, J.G. Kuenen, R. Kleerebezem, M.C. van Loosdrecht, Role of nitrite in the competition between denitrification and DNRA in a chemostat enrichment culture. AMB Express 7(1), 91 (2017)

    Google Scholar 

  • M.T. Van Der Meer, S. Schouten, J.S. Sinninghe Damsté, The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org. Geochem. 28(9–10), 527–533 (1998)

    Google Scholar 

  • M.A. Van Kessel, D.R. Speth, M. Albertsen, P.H. Nielsen, H.J. Op Den Camp, B. Kartal, M.S. Jetten, S. Lücker, Complete nitrification by a single microorganism. Nature 528(7583), 555–559 (2015)

    ADS  Google Scholar 

  • M. Vandenbroucke, C. Largeau, Kerogen origin, evolution and structure. Org. Geochem. 38(5), 719–833 (2007)

    Google Scholar 

  • M. Vargas, K. Kashefi, E.L. Blunt-harris, D.R. Lovley, Fe (III) reduction on early Earth. Nature 395, 65–67 (1998)

    ADS  Google Scholar 

  • J. Veizer, D. Ala, K. Azmy, P. Bruckschen, D. Buhl, F. Bruhn, G.A. Garden, A. Diener, S. Ebneth, Y. Godderis, T. Jasper, C. Korte, F. Pawellek, O.G. Podlaha, H. Strauss, 87Sr/86Sr, \(\delta\)13C and \(\delta\)18O evolution of Phanerozoic seawater. Chem. Geol. 161(1), 59–88 (1999)

    ADS  Google Scholar 

  • S.S. Venceslau, Y. Stockdreher, C. Dahl, I.A. Pereira, The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. Biochim. Biophys. Acta, Bioenerg. 1837(7), 1148–1164 (2014)

    Google Scholar 

  • A.R. Waldeck, B.R. Cowie, E. Bertran, B.A. Wing, I. Halevy, D.T. Johnston, Deciphering the atmospheric signal in marine sulfate oxygen isotope composition. Earth Planet. Sci. Lett. 522, 12–19 (2019)

    ADS  Google Scholar 

  • J.C. Walker, P.B. Hays, J.F. Kasting, A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86(C10), 9776–9782 (1981)

    ADS  Google Scholar 

  • X.T. Wang, D.M. Sigman, A.L. Cohen, D.J. Sinclair, R.M. Sherrell, M.A. Weigand, D.V. Erler, H. Ren, Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda. Geochim. Cosmochim. Acta 148, 179–190 (2015)

    ADS  Google Scholar 

  • S.D. Wankel, A.S. Bradley, D.L. Eldridge, D.T. Johnston, Determination and application of the equilibrium oxygen isotope effect between water and sulfite. Geochim. Cosmochim. Acta 125, 694–711 (2014)

    ADS  Google Scholar 

  • L.M. Ward, P.M. Shih, The evolution and productivity of carbon fixation pathways in response to changes in oxygen concentration over geological time. Free Radic. Biol. Med. 140, 188–199 (2019)

    Google Scholar 

  • L.M. Ward, B. Rasmussen, W.W. Fischer, Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. J. Geophys. Res., Biogeosci. 124(2), 211–226 (2019)

    Google Scholar 

  • M.R. Warke, T.D. Rocco, A.L. Zerkle, A. Lepland, A.R. Prave, A.P. Martin, Y. Ueno, D.J. Condon, M.W. Claire, The great oxidation event preceded a paleoproterozoic “snowball Earth”. Proc. Natl. Acad. Sci. 117(24), 13314–13320 (2020)

    ADS  Google Scholar 

  • M.C. Weiss, F.L. Sousa, N. Mrnjavac, S. Neukirchen, M. Roettger, S. Nelson-Sathi, W.F. Martin, The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1(9), 16116 (2016)

    Google Scholar 

  • C.B. Wenk, B.A. Wing, I. Halevy, Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. ISME J. 12(2), 495–507 (2018)

    Google Scholar 

  • J.P. Werne, D.J. Hollander, A. Behrens, P. Schaeffer, P. Albrecht, J.S. Sinninghe Damsté, Timing of early diagenetic sulfurization of organic matter: a precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin, Venezuela. Geochim. Cosmochim. Acta 64(10), 1741–1751 (2000)

    ADS  Google Scholar 

  • A.R. Whitehill, S. Ono, Excitation band dependence of sulfur isotope mass-independent fractionation during photochemistry of sulfur dioxide using broadband light sources. Geochim. Cosmochim. Acta 94, 238–253 (2012)

    ADS  Google Scholar 

  • A.R. Whitehill, C. Xie, X. Hu, D. Xie, H. Guo, S. Ono, Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early Earth’s atmosphere. Proc. Natl. Acad. Sci. 110(44), 17697–17702 (2013)

    ADS  Google Scholar 

  • A.R. Whitehill, B. Jiang, H. Guo, S. Ono, SO2 photolysis as a source for sulfur mass-independent isotope signatures in stratospheric aerosols. Atmos. Chem. Phys. Discuss. 14(16), 23499–23554 (2015)

    ADS  Google Scholar 

  • E.B. Wilkes, A. Pearson, A general model for carbon isotopes in red-lineage phytoplankton: interplay between unidirectional processes and fractionation by RubisCO. Geochim. Cosmochim. Acta 265, 163–181 (2019)

    ADS  Google Scholar 

  • K.H. Williford, T. Ushikubo, K. Lepot, K. Kitajima, C. Hallmann, M.J. Spicuzza, R. Kozdon, J.L. Eigenbrode, R.E. Summons, J.W. Valley, Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: neoArchean shales and carbonates. Geobiology 14(2), 105–128 (2016)

    Google Scholar 

  • B.A. Wing, I. Halevy, Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration. Proc. Natl. Acad. Sci. USA 111(51), 18116–18125 (2014)

    ADS  Google Scholar 

  • C.R. Witkowski, J.W. Weijers, B. Blais, S. Schouten, J.S. Sinninghe Damsté, Molecular fossils from phytoplankton reveal secular PCO2 trend over the Phanerozoic. Sci. Adv. 4(11), eaat4556 (2018)

    ADS  Google Scholar 

  • U.G. Wortmann, B. Chernyavsky, S.M. Bernasconi, B. Brunner, M.E. Böttcher, P.K. Swart, Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: Dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim. Cosmochim. Acta 71(17), 4221–4232 (2007)

    ADS  Google Scholar 

  • T. Wotte, G.A. Shields-Zhou, H. Strauss, Carbonate-associated sulfate: experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol. Chem. Geol. 326(327), 132–144 (2012)

    ADS  Google Scholar 

  • N. Wu, J. Farquhar, H. Strauss, S.-T. Kim, D.E. Canfield, Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial. Geochim. Cosmochim. Acta 74(7), 2053–2071 (2010)

    ADS  Google Scholar 

  • N. Wu, J. Farquhar, H. Strauss, \(\delta\)34S and \(\delta\)33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate. Earth Planet. Sci. Lett. 399, 44–51 (2014)

    ADS  Google Scholar 

  • J. Yang, C.K. Junium, N.V. Grassineau, E.G. Nisbet, G. Izon, C. Mettam, A. Martin, A.L. Zerkle, Ammonium availability in the late archaean nitrogen cycle. Nat. Geosci. 12(7), 553–557 (2019)

    ADS  Google Scholar 

  • S. Zaarur, D.T. Wang, S. Ono, T. Bosak, Influence of phosphorus and cell geometry on the fractionation of sulfur isotopes by several species of Desulfovibrio during microbial sulfate reduction. Front. Microbiol. 8, 890 (2017)

    Google Scholar 

  • J. Zachos, H. Pagani, L. Sloan, E. Thomas, K. Billups, Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517), 686–693 (2001)

    ADS  Google Scholar 

  • K. Zahnle, M. Claire, D. Catling, The loss of mass-independent fractionation in sulfur due to a palaeoproterozoic collapse of atmospheric methane. Geobiology 4(4), 271–283 (2006)

    Google Scholar 

  • R.E. Zeebe, Kinetic fractionation of carbon and oxygen isotopes during hydration of carbon dioxide. Geochim. Cosmochim. Acta 139, 540–552 (2014)

    ADS  Google Scholar 

  • R.E. Zeebe, D. Wolf-Gladrow, in CO2 in Seawater: Equilibrium, Kinerics, Isotopes. Elsevier Oceanography Series, vol. 65 (2001), pp. 1–341

    Google Scholar 

  • R.E. Zeebe, J. Bijma, D.A. Wolf-Gladrow, A diffusion-reaction model of carbon isotope fractionation in foraminifera. Mar. Chem. 64(3), 199–227 (1999a)

    Google Scholar 

  • R.E. Zeebe, D.A. Wolf-Gladrow, H. Jansen, On the time required to establish chemical and isotopic equilibrium in the carbon dioxide system in seawater. Mar. Chem. 65(3–4), 135–153 (1999b)

    Google Scholar 

  • R.E. Zeebe, J.C. Zachos, G.R. Dickens, Carbon dioxide forcing alone insufficient to explain palaeocene-Eocene thermal maximum warming. Nat. Geosci. 2(8), 576–580 (2009)

    ADS  Google Scholar 

  • A.L. Zerkle, C.K. Junium, D.E. Canfield, C.H. House, Production of 15N-depleted biomass during cyanobacterial N2-fixation at high Fe concentrations. J. Geophys. Res., Biogeosci. 113(3), G03014 (2008)

    ADS  Google Scholar 

  • A.L. Zerkle, J. Farquhar, D.T. Johnston, R.P. Cox, D.E. Canfield, Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim. Cosmochim. Acta 73(2), 291–306 (2009)

    ADS  Google Scholar 

  • A.L. Zerkle, A. Kamyshny, L.R. Kump, J. Farquhar, H. Oduro, M.A. Arthur, Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes. Geochim. Cosmochim. Acta 74(17), 4953–4970 (2010)

    ADS  Google Scholar 

  • A.L. Zerkle, M.W. Claire, S.D. Domagal-Goldman, J. Farquhar, S.W. Poulton, A bistable organic-rich atmosphere on the neoarchaean Earth. Nat. Geosci. 5(5), 359–363 (2012)

    ADS  Google Scholar 

  • A.L. Zerkle, D.S. Jones, J. Farquhar, J.L. Macalady, Sulfur isotope values in the sulfidic Frasassi cave system, central Italy: a case study of a chemolithotrophic S-based ecosystem. Geochim. Cosmochim. Acta 173, 373–386 (2016)

    ADS  Google Scholar 

  • A.L. Zerkle, S.W. Poulton, R.J. Newton, C. Mettam, M.W. Claire, A. Bekker, C.K. Junium, Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542(7642), 465–467 (2017)

    ADS  Google Scholar 

  • J. Zhang, P.D. Quay, D.O. Wilbur, Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim. Cosmochim. Acta 59(1), 107–114 (1995)

    ADS  Google Scholar 

  • X. Zhang, A.L. Gillespie, A.L. Sessions, Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc. Natl. Acad. Sci. USA 106(31), 12580–12586 (2009)

    ADS  Google Scholar 

  • X. Zhang, D.M. Sigman, F.M. Morel, A.M. Kraepiel, Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc. Natl. Acad. Sci. USA 111(13), 4782–4787 (2014)

    ADS  Google Scholar 

  • I. Zhelezinskaia, A.J. Kaufman, J. Farquhar, J. Cliff, Large sulfur isotope fractionations associated with neoArchean microbial sulfate reduction. Science 346(6210), 742–744 (2014)

    ADS  Google Scholar 

  • X. Zhu-Barker, A.R. Cavazos, N.E. Ostrom, W.R. Horwath, J.B. Glass, The importance of abiotic reactions for nitrous oxide production. Biogeochemistry 126(3), 251–267 (2015)

    Google Scholar 

Download references

Acknowledgements

This paper is the product of the geobiology working group within the International Space Science Institute (ISSI) workshop ‘Reading Terrestrial Planet Evolution in Isotopes and Element Measurements’. We would like to thank ISSI and Europlanet for their support. Thanks to Peter Crockford, who provided invaluable feedback on the manuscript. We would also like to thank Guest Editor Helmut Lammer and three anonymous reviewers for careful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. K. Lloyd or H. L. O. McClelland.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M.K. Lloyd and H.L.O. McClelland contributed equally to this work

Reading Terrestrial Planet Evolution in Isotopes and Element Measurements

Edited by Helmut Lammer, Bernard Marty, Aubrey L. Zerkle, Michel Blanc, Hugh O’Neill and Thorsten Kleine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, M.K., McClelland, H.L.O., Antler, G. et al. The Isotopic Imprint of Life on an Evolving Planet. Space Sci Rev 216, 112 (2020). https://doi.org/10.1007/s11214-020-00730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00730-6

Keywords

Navigation