Skip to main content
Log in

Calibration and Performance of the REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission to Bennu

  • Special Communication
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The REgolith X-ray Imaging Spectrometer (REXIS) instrument on board NASA’s OSIRIS-REx mission to the asteroid Bennu is a Class-D student collaboration experiment designed to detect fluoresced X-rays from the asteroid’s surface to measure elemental abundances. In July and November 2019 REXIS collected ∼615 hours of integrated exposure time of Bennu’s sun-illuminated surface from terminator orbits. As reported in Hoak et al. (Results from the REgolith X-ray Imaging Spectrometer (REXIS) at Bennu, 2021) the REXIS data do not contain a clear signal of X-ray fluorescence from the asteroid, in part due to the low incident solar X-ray flux during periods of observation. To support the evaluation of the upper limits on the detectable X-ray signal that may provide insights for the properties of Bennu’s regolith, we present an overview of the REXIS instrument, its operation, and details of its in-flight calibration on astrophysical X-ray sources. This calibration includes the serendipitous detection of the transient X-ray binary MAXI J0637-430 during Bennu observations, demonstrating the operational success of REXIS at the asteroid. We convey some lessons learned for future X-ray spectroscopy imaging investigations of asteroid surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • B. Allen, J. Grindlay, J. Hong, R.P. Binzel, R. Masterson, N.K. Inamdar, M. Chodas, M.W. Smith, M.W. Bautz, S.E. Kissel, J. Villasenor, M. Oprescu, N. Induni, The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids, in Optical Modeling and Performance Predictions VI, ed. by M.A. Kahan, M.B. Levine. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8840 (2013), p. p 88400M. https://doi.org/10.1117/12.2041715. arXiv:1309.6665

    Chapter  Google Scholar 

  • B. Allen, J. Grindlay, D. Hoak, J. Hong, D. Guevel, M. Lambert, R.P. Binzel, R. Masterson, A. Cummings, L. Lim, D. Lauretta, B. Boynton, Detection of MAXI J0637-430 by the Regolith X-Ray Imaging Spectrometer (REXIS) onboard OSIRIS-REx. Astron. Telegram 13594, 1 (2020)

    ADS  Google Scholar 

  • M.W. Bautz, S.E. Kissel, G.Y. Prigozhin, B. LaMarr, B.E. Burke, J.A. Gregory, Progress in x-ray CCD sensor performance for the Astro-E2 X-ray imaging spectrometer, in High-Energy Detectors in Astronomy, ed. by A.D. Holland. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5501 (2004), pp. 111–122. https://doi.org/10.1117/12.553198

    Chapter  Google Scholar 

  • P. Biswas, Radiation management, avionics development, and integrated testing of a class-D space-based asteroid X-ray spectrometer. Masters Thesis, Massachusetts Institute of Technology, Cambridge (2016)

  • P.C. Chamberlin, T.N. Woods, F.G. Eparvier, A.R. Jones, Next generation x-ray sensor (XRS) for the NOAA GOES-R satellite series, in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J.A. Fennelly. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7438 (2009), p. 743802. https://doi.org/10.1117/12.826807

    Chapter  Google Scholar 

  • R.H. Dicke, Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. Lett. 153, L101 (1968). https://doi.org/10.1086/180230

    Article  ADS  Google Scholar 

  • F. Favata, J. Vink, D. dal Fiume, A.N. Parmar, A. Santangelo, T. Mineo, A. Preite-Martinez, J.S. Kaastra, J.A.M. Bleeker, The broad-band X-ray spectrum of the CAS a supernova remnant as seen by the BeppoSAX observatory. Astron. Astrophys. 324, L49–L52 (1997). arXiv:astro-ph/9707052

    ADS  Google Scholar 

  • P. Freeman, S. Doe, A. Siemiginowska, Sherpa: a mission-independent data analysis application. Proc. SPIE 4477(76) (2001). https://doi.org/10.1117/12.447161

  • K.C. Gendreau, Z. Arzoumanian, P.W. Adkins, C.L. Albert, J.F. Anders, A.T. Aylward, C.L. Baker, E.R. Balsamo, W.A. Bamford, S.S. Benegalrao, D.L. Berry, S. Bhalwani, J.K. Black, C. Blaurock, G.M. Bronke, G.L. Brown, J.G. Budinoff, J.D. Cantwell, T. Cazeau, P.T. Chen, T.G. Clement, A.T. Colangelo, J.S. Coleman, J.D. Coopersmith, W.E. Dehaven, J.P. Doty, M.D. Egan, T. Enoto, T.W. Fan, D.M. Ferro, R. Foster, N.M. Galassi, L.D. Gallo, C.M. Green, D. Grosh, K.Q. Ha, M.A. Hasouneh, K.B. Heefner, P. Hestnes, L.J. Hoge, T.M. Jacobs, J.L. Jørgensen, M.A. Kaiser, J.W. Kellogg, S.J. Kenyon, R.G. Koenecke, R.P. Kozon, B. LaMarr, M.D. Lambertson, A.M. Larson, S. Lentine, J.H. Lewis, M.G. Lilly, K.A. Liu, A. Malonis, S.S. Manthripragada, C.B. Markwardt, B.D. Matonak, I.E. Mcginnis, R.L. Miller, A.L. Mitchell, J.W. Mitchell, J.S. Mohammed, C.A. Monroe, K.M. Montt de Garcia, P.D. Mulé, L.T. Nagao, S.N. Ngo, E.D. Norris, D.A. Norwood, J. Novotka, T. Okajima, L.G. Olsen, C.O. Onyeachu, H.Y. Orosco, J.R. Peterson, K.N. Pevear, K.K. Pham, S.E. Pollard, J.S. Pope, D.F. Powers, C.E. Powers, S.R. Price, G.Y. Prigozhin, J.B. Ramirez, W.J. Reid, R.A. Remillard, E.M. Rogstad, G.P. Rosecrans, J.N. Rowe, J.A. Sager, C.A. Sanders, B. Savadkin, M.R. Saylor, A.F. Schaeffer, N.S. Schweiss, S.R. Semper, P.J. Serlemitsos, L.V. Shackelford, Y. Soong, J. Struebel, M.L. Vezie, J.S. Villasenor, L.B. Winternitz, G.I. Wofford, M.R. Wright, M.Y. Yang, W.H. Yu, The Neutron star Interior Composition Explorer (NICER): design and development, in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, ed. by J.W.A. den Herder, T. Takahashi, M. Bautz. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9905 (2016), p. 99051H. https://doi.org/10.1117/12.2231304

    Chapter  Google Scholar 

  • F.A. Hanser, F.B. Sellers, Design and calibration of the GOES-8 solar x-ray sensor: the XRS, in GOES-8 and Beyond, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2812, ed. by E.R. Washwell (1996), pp. 344–352. https://doi.org/10.1117/12.254082

    Chapter  Google Scholar 

  • D. Hoak, R.P. Binzel, B. Allen, J. Hong, D. Guevel, J. Grindlay, R. Masterson, M. Chodas, A. Cummings, M. Lambert, C. Thayer, L.F. Lim, B.E. Clark, T.J. McCoy, D. Lauretta, Results from the REgolith X-ray Imaging Spectrometer (REXIS) at Bennu (2021). In preparation

  • M. Jones, M. Chodas, M.J. Smith, R.A. Masterson, Engineering design of the Regolith X-ray Imaging Spectrometer (REXIS) instrument: an OSIRIS-REx student collaboration, in Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, ed. by T. Takahashi, J.W.A den Herder, M. Bautz. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9144 (2014), p. 914453. https://doi.org/10.1117/12.2056903

    Chapter  Google Scholar 

  • K. Koyama, H. Tsunemi, T. Dotani, M.W. Bautz, K. Hayashida, T.G. Tsuru, H. Matsumoto, Y. Ogawara, G.R. Ricker, J. Doty, S.E. Kissel, R. Foster, H. Nakajima, H. Yamaguchi, H. Mori, M. Sakano, K. Hamaguchi, M. Nishiuchi, E. Miyata, K. Torii, M. Namiki, S. Katsuda, D. Matsuura, T. Miyauchi, N. Anabuki, N. Tawa, M. Ozaki, H. Murakami, Y. Maeda, Y. Ichikawa, G.Y. Prigozhin, E.A. Boughan, B. Lamarr, E.D. Miller, B.E. Burke, J.A. Gregory, A. Pillsbury, A. Bamba, J.S. Hiraga, A. Senda, H. Katayama, S. Kitamoto, M. Tsujimoto, T. Kohmura, Y. Tsuboi, H. Awaki, X-Ray Imaging Spectrometer (XIS) on board Suzaku. Publ. Astron. Soc. Jpn. 59, 23–33 (2007). https://doi.org/10.1093/pasj/59.sp1.S23

    Article  Google Scholar 

  • M.M. Lambert, A root cause analysis of REXIS detection efficiency loss during phase E operations. Masters Thesis, Massachusetts Institute of Technology, Cambridge (2020)

  • R.A. Masterson, M. Chodas, L. Bayley, B. Allen, J. Hong, P. Biswas, C. McMenamin, K. Stout, E. Bokhour, H. Bralower, D. Carte, S. Chen, M. Jones, S. Kissel, F. Schmidt, M. Smith, G. Sondecker, L.F. Lim, D.S. Lauretta, J.E. Grindlay, R.P. Binzel, Regolith X-Ray Imaging Spectrometer (REXIS) aboard the OSIRIS-REx Asteroid Sample Return mission. Space Sci. Rev. 214(1), 48 (2018). https://doi.org/10.1007/s11214-018-0483-8

    Article  ADS  Google Scholar 

  • H. Negoro, K. Miike, M. Nakajima, W. Maruyama, M. Aoki, K. Kobayashi, T. Mihara, T. Tamagawa, M. Matsuoka, T. Sakamoto, M. Serino, S. Sugita, H. Nishida, A. Yoshida, Y. Tsuboi, W. Iwakiri, R. Sasaki, H. Kawai, T. Sato, M. Shidatsu, N. Kawai, M. Oeda, K. Shiraishi, S. Nakahira, Y. Sugawara, S. Ueno, H. Tomida, M. Ishikawa, N. Isobe, R. Shimomukai, M. Tominaga, Y. Ueda, A. Tanimoto, S. Yamada, S. Ogawa, K. Setoguchi, T. Yoshitake, H. Tsunemi, T. Yoneyama, K. Asakura, K. Hattori, M. Yamauchi, S. Iwahori, Y. Kurihara, K. Kurogi, T. Kawamuro, K. Yamaoka, Y. Kawakubo, M. Sugizaki (MAXI Team), MAXI/GSC detection of a soft X-ray transient MAXI J0637-430. Astronomer’s Telegram 13256, 1 (2019)

    ADS  Google Scholar 

  • L.R. Nittler, R.D. Starr, L. Lim, T.J. McCoy, T.H. Burbine, R.C. Reedy, J.I. Trombka, P. Gorenstein, S.W. Squyres, W.V. Boynton, T.P. McClanahan, J.S. Bhangoo, P.E. Clark, M.E. Murphy, R. Killen, X-ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros. Meteorit. Planet. Sci. 36(12), 1673–1695 (2001). https://doi.org/10.1111/j.1945-5100.2001.tb01856.x

    Article  ADS  Google Scholar 

  • T. Okada, K. Shirai, Y. Yamamoto, T. Arai, K. Ogawa, K. Hosono, M. Kato, X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science 312(5778), 1338–1341 (2006). https://doi.org/10.1126/science.1125731

    Article  ADS  Google Scholar 

  • G.Y. Prigozhin, A. Rasmussen, M.W. Bautz, G.R. Ricker, Model of the x-ray response of the ACIS CCD, in X-Ray Optics, Instruments, and Missions, ed. by R.B. Hoover, A.B. Walker. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3444 (1998), pp. 267–275. https://doi.org/10.1117/12.331291

    Chapter  Google Scholar 

  • G. Prigozhin, S. Jones, M. Bautz, G. Ricker, S. Kraft, The physics of the low-energy tail in the ACIS CCD. The spectral redistribution function. Nucl. Instrum. Methods Phys. Res. A 439(2–3), 582–591 (2000). https://doi.org/10.1016/S0168-9002(99)00850-5

    Article  ADS  Google Scholar 

  • G.Y. Prigozhin, M.W. Bautz, J. Ricker, R. George, Model of the backside illuminated Chandra CCD, in X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy, ed. by J.E. Truemper, H.D. Tananbaum. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4851 (2003), pp. 149–156. https://doi.org/10.1117/12.461428

    Chapter  Google Scholar 

  • B. Rizk, C. Drouet d’Aubigny, D. Golish, C. Fellows, C. Merrill, P. Smith, M.S. Walker, J.E. Hendershot, J. Hancock, S.H. Bailey, D.N. DellaGiustina, D.S. Lauretta, R. Tanner, M. Williams, K. Harshman, M. Fitzgibbon, W. Verts, J. Chen, T. Connors, D. Hamara, A. Dowd, A. Lowman, M. Dubin, R. Burt, M. Whiteley, M. Watson, T. McMahon, M. Ward, D. Booher, M. Read, B. Williams, M. Hunten, E. Little, T. Saltzman, D. Alfred, S. O’Dougherty, M. Walthall, K. Kenagy, S. Peterson, B. Crowther, M.L. Perry, C. See, S. Selznick, C. Sauve, M. Beiser, W. Black, R.N. Pfisterer, A. Lancaster, S. Oliver, C. Oquest, D. Crowley, C. Morgan, C. Castle, R. Dominguez, M. Sullivan, OCAMS: the OSIRIS-REx camera suite. Space Sci. Rev. 214(1), 26 (2018)

    Article  ADS  Google Scholar 

  • T.D. Russell, J.C.A. Miller-Jones, G.R. Sivakoff, A.J. Tetarenko, ATCA radio detection of the new X-ray transient MAXI J0637-430. Astron. Telegram 13275, 1 (2019)

    ADS  Google Scholar 

  • C. Thayer, B. Allen, M.W. Bautz, R.P. Binzel, M. Chodas, D. Guevel, D. Hoak, J. Hong, M. Lambert, R. Masterson, S. Megerssa, K. Ryu, Performance of a directly deposited optical blocking filter on X-ray CCDs: case study from the Regolith X-ray Imaging Spectrometer (REXIS) experiments (2021). In preparation

  • J.A. Tomsick, J. Garcia, A. Fabian, D. Walton, J. Jiang, F. Fuerst, D. Buisson, A. Shaw, J. Hare, M. Bachetti, R. Connors, P. Gandhi, Y. Xu, A NuSTAR observation of MAXI J0637-430: a new X-ray transient and likely black hole X-ray binary. Astron. Telegram 13270, 1 (2019)

    ADS  Google Scholar 

  • J.I. Trombka, S.W. Squyres, J. Brückner, W.V. Boynton, R.C. Reedy, T.J. McCoy, P. Gorenstein, L.G. Evans, J.R. Arnold, R.D. Starr, L.R. Nittler, M.E. Murphy, I. Mikheeva, R.L. McNutt, T.P. McClanahan, E. McCartney, J.O. Goldsten, R.E. Gold, S.R. Floyd, P.E. Clark, T.H. Burbine, J.S. Bhangoo, S.H. Bailey, M. Petaev, The elemental composition of asteroid 433 Eros: results of the NEAR-Shoemaker X-ray spectrometer. Science 289(5487), 2101–2105 (2000). https://doi.org/10.1126/science.289.5487.2101

    Article  ADS  Google Scholar 

  • M.C. Weisskopf, M. Guainazzi, K. Jahoda, N. Shaposhnikov, S.L. O’Dell, V.E. Zavlin, C. Wilson-Hodge, R.F. Elsner, On calibrations using the Crab nebula and models of the nebular X-ray emission. Astrophys. J. 713(2), 912–919 (2010). https://doi.org/10.1088/0004-637X/713/2/912. arXiv:1003.1916

    Article  ADS  Google Scholar 

  • T.N. Woods, A. Caspi, P.C. Chamberlin, A. Jones, R. Kohnert, J.P. Mason, C.S. Moore, S. Palo, C. Rouleau, S.C. Solomon, J. Machol, R. Viereck, New solar irradiance measurements from the miniature X-ray solar spectrometer CubeSat. Astrophys. J. Lett. 835(2), 122 (2017). https://doi.org/10.3847/1538-4357/835/2/122. arXiv:1610.01936

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the OSIRIS-REx team for accommodating the REXIS team’s various operational requests as well as their helpful suggestions and guidance. The authors would like to thank Beth Clark and the members of the OSIRIS-REx X-ray Science Working Group for valuable advice and support. The REXIS instrument was built by a student team that included over eighty graduate and undergraduate students with invaluable support from Mark Bautz, Joel Villasenor and Steve Kissel from MIT Kavli Institute, the OSIRIS-REx payload team at NASA GFSC, especially Mary Walker, Libby Adelman, Michael Choi, James Dailey, Michael Pryzby and David Petrick, Lockheed Martin payload engineer Jill Cattrysse-Larson, and members of the OSIRIS-REx Standing Review Board, Steven Battel, Ed Powers and Mark Kahan. We also thank Dr. Keith Gendreau and the NICER team for enabling the near-simultaneous observations of Sco X-1 with NICER and Dr. Jeroen Homan for assisting the analysis of the NICER data. This work is supported by NASA Grant NNM10AA11C. MIT Lincoln Laboratory material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force. This document is approved for public release. Distribution is unlimited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaesub Hong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Note by the Editor: This is a Special Communication. In addition to invited review papers and topical collections, Space Science Reviews publishes unsolicited Special Communications. These are papers linked to an earlier topical volume/collection, report-type papers, or timely papers dealing with a strong space-science-technology combination (such papers summarize the science and technology of an instrument or mission in one paper)

Appendices

Appendix A: Angular Resolution and Point Source Localization in Coded-Aperture Imaging

The angular resolution (\(\Delta \theta \)) and the localization error (\(\delta \theta \)) of a point source in coded-aperture imaging are given as

$$\begin{aligned} \Delta \theta = & \tan ^{-1}\left ( \frac{\sqrt{\Delta m^{2}+ \Delta d^{2}}}{s}\right ), \\ \delta \theta \sim & \frac{\Delta \theta }{\sigma }, \end{aligned}$$

where \(\Delta m\) is the mask pixel size, \(\Delta d\) the detector pixel size, \(s\) the separation from the mask and detector, and \(\sigma \) the signal-to-noise ratio (SNR) of the point source.

The upper limit in the localization error is set by the minimum SNR (≳5) needed to confidently claim a detection. Coded aperture imagers with a random mask pattern such as REXIS also have a upper limit in the SNR they can achieve due to the coding noise arising from the random nature of the mask pattern.

The upper limit in the SNR from a detector plane image is the square root of the number of mask pixels that the detector plane image can capture. For REXIS, the upper limit in SNR ranges from ∼ 18 to ∼ 25, depending the number of nodes used in the detector plane image. This in turn sets the lower limit in the localization error. Even without the coding noise, there is a fundamental systematic error in localization, which originates from the finite detector pixel size (25″) and the pointing jitter (\(\sim 10''\)). Thus, the localization error of REXIS would be limited to ≳ 30″, unless algorithms for the subpixel randomization and active jitter compensation are employed.

Appendix B: Modeling the CCD Response of the Mn-Kα Line

The response \(f(E)\) of the 5.9 keV Mn-Kα line in Fig. 7 can be described by a Gaussian function and an exponential low-energy tail component:

$$\begin{aligned} f(E) = A_{1} \exp \left (- \frac{(E - E_{0})^{2}}{\Delta _{1}^{2}/\log 16 }\right ) & \\ + A_{2} \bar{\theta }(E-E_{0}) e^{C_{0} (E - E_{0})} \left [ 1 - \exp \left (-\frac{(E - E_{0})^{2} }{ \Delta _{2}^{2}/ \log 16} \right ) \right ] &, \end{aligned}$$

where \(A_{1}\) and \(A_{2}\) are the normalization constants, \(E_{0}\) the line energy, \(\Delta _{1}\) and \(\Delta _{2}\) the FWHM of the Gaussian and tail components, \(C_{0}\) the exponential decay parameter. \(\bar{\theta }(x)\) is a reverse step function, where

$$\begin{aligned} \bar{\theta }(x) = \textstyle\begin{cases} 1,& \text{if } x \leq 0 \\ 0, & \text{otherwise.} \end{cases}\displaystyle \end{aligned}$$

Appendix C: Pointing Coordinates of the Crab Nebula and Sco X-1 Observations

Table 6 lists the boresight coordinates of the Crab Nebula observations during the Crab Calibration Operation and the Sco X-1 observations during Mask Calibration Operation, respectively. See Fig. 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Binzel, R.P., Allen, B. et al. Calibration and Performance of the REgolith X-Ray Imaging Spectrometer (REXIS) Aboard NASA’s OSIRIS-REx Mission to Bennu. Space Sci Rev 217, 83 (2021). https://doi.org/10.1007/s11214-021-00853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-021-00853-4

Keywords

Navigation