Skip to main content

Advertisement

Log in

A Comparative Analysis of the Algorithms for De-noising Images Contaminated with Impulse Noise

  • Overview / Summary papers
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Image pre-processing is one of the vital tasks used to redefine an image to enhance human visual perception and better information extraction. Several state-of-art have been proposed to de-noise an image contaminated with impulsive noise. This paper focuses on the study and analysis of several de-noising algorithms based on median filter and its advanced non-linear approaches. The study further concentrates on the implementation approaches proposed for de-noising impulsive noise with the deep learning technique. The study highlights the limitation of one approach and its possible solutions with other approaches proposed. The study also highlights several other issues such as optimum selection of window size, edge restoration, even number of noise-free pixels in the median filter, and its variations which have no solution so far. The performance metrics used for the evaluation of several state-of-art algorithms are peak signal-to-noise ratio (PSNR), mean absolute error, computation time and structural similarity index (SSIM). Some of the recently developed algorithms such as classifier and regression model and deep convolutional neural network-based model show PSNR of 45.66 dB and 45.14 dB in 10% noise density and 28.77 dB and 29.18 dB in 90% noise density using Lena image respectively while SSIM of 0.9851 and 0.9847 in 10% noise density and 0.8116 and 0.8101 in 90% noise density using sample1 from BBBC041 dataset respectively. The paper brings out the limitations and issues associated with the conventional and deep learning approaches for the removal of impulsive noise both subjectively and objectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACWMF:

Adaptive center weighted median filter

ADWMF:

Adaptive dynamically weighted median filter

AMF:

Adaptive median filter

AMFLPD:

Adaptive median filtering based on local pixel distribution

APF:

Adaptive probability filter

ASMF:

Adaptive switching median filter

ASWMF:

Adaptive switching weighted median filter

ATF:

Adaptive trimmed filter

ATMF:

Alpha trimmed median filter

BDND:

Switching median filter with boundary discriminative noise detection

BN:

Batch normalization

BPDF:

Based on pixel density function

CT:

Computation time

FEMF:

Fast and efficient median filter

IEF:

Image enhancement factor

MAE:

Mean absolute error

MDBUTMF:

Modified decision based un-symmetric trimmed median filter

MRI:

Magnetic resonance imaging

MSE:

Mean square error

NAFSM:

Noise adaptive fuzzy switching median filter

NASM:

Noise adaptive soft-switching median filter

ND:

Noise density

NFP:

Noise free pixel

NLSF-CNN:

Non local switching filter convolutional neural network

NSS:

Non-local self-similarity

PDAITMF:

Probabilistic decision based adaptive improved trimmed median filter

PDBATF:

Probabilistic decision based average trimmed filter

PDBF:

Probabilistic decision based filter

PDITMF:

Probabilistic decision based improved trimmed median filter

PDNDM:

Probabilistic decision based noise detection module

PETMF:

Patch else trimmed median filter

PSMF:

Progressive switching median filter

PSNR:

Peak signal to noise ratio

RELU:

Rectified linear unit

SMF:

Standard median filter

SSIM:

Structural similarity index

SWMF:

Switching weighted median filter

TMF:

Trimmed median filter

TSMF:

Tri-state median filter

UTMF:

Un-symmetric trimmed median filter

WMF:

Weighted median filter

∑:

Summation

μ:

Average of image

σ:

Variance of image

 = :

Equal to

 ≥ :

Greater than equal to

%:

Percentage

Z:

Clean image

Zd :

De-noised image

References

  1. Huang, S., & Wan, S. (2020). A total variation denoising method based on median filter and phase consistency. Sensing and Imaging, 21(1), 1–15.

    Article  Google Scholar 

  2. Jeon, G. (2016). Denoising in contrast-enhanced X-ray images. Sensing and Imaging, 17(1), 1–11.

    Article  Google Scholar 

  3. Zhu, Y., Li, H., & Jiang, H. (2017). Fuzzy logic-based filter for removing additive and impulsive noise from color images. Sensing and Imaging, 18(1), 1–14.

    Article  Google Scholar 

  4. Rajabi, M., & Hasanzadeh, R. P. R. (2021). A Modified adaptive hysteresis smoothing approach for image denoising based on spatial domain redundancy. Sens Imaging, 22, 42. https://doi.org/10.1007/s11220-021-00364-0.

    Article  Google Scholar 

  5. Baljozović, D., Kovačević, B., & Baljozović, A. (2013). Mixed noise removal filter for multi-channel images based on halfspace deepest location. IET Image Processing, 7(4), 310–323.

    Article  MathSciNet  Google Scholar 

  6. Gellert, A., & Brad, R. (2016). Context-based prediction filtering of impulse noise images. IET Image Processing, 10(6), 429–437.

    Article  Google Scholar 

  7. Coupé, P., Manjón, J. V., Robles, M., & Collins, D. L. (2012). Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Processing, 6(5), 558–568.

    Article  MathSciNet  Google Scholar 

  8. Gonzalez, R., & Woods, R. Digital image processing (2nd ed.), 2003. Prentice Hall.

    Google Scholar 

  9. Poularikas, E. A. D. (1999) Nonlinear digital filtering, Handbook of formulas tables signal processing.

  10. Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley Publishing Company.

    MATH  Google Scholar 

  11. Yin, L., Yang, R., Gabbouj, M., & Member, S. (1996). “Weighted median filters : A tutorial. IEEE Transactions Circuits and System II: Analog and Digital Signal Processing, 43(6), 157–192.

    Google Scholar 

  12. Zhang, S., Karim, M. A., & Member, S. (2002). A new impulse detector for switching median filters. IEEE Signal Processing Letters, 9(11), 360–363.

    Article  Google Scholar 

  13. Wang, Z., & Zhang, D. (1999). Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Transactions Circuits and Systems II: Analog and Digital Signal Processing, 46(1), 78–80.

    Article  Google Scholar 

  14. Ng, P. E., & Ma, K. (2006). Discriminative noise detection for extremely. IEEE Transactions on Image Processing, 15(6), 1506–1516.

    Google Scholar 

  15. Thanakumar, G. (2016). Absolute difference based progressive switching median filter for efficient impulse noise removal. International Journal of Engineering Trends and Technology (IJETT), 41(5), 216–221.

    Article  Google Scholar 

  16. Tao, C., Kaikuang, M., & Lihui, C. (1999). Tri-state median filter for image denosing. IEEE Transactions on Image Processing, 8(12), 1834–1838.

    Article  Google Scholar 

  17. Hwang, H., & Haddad, R. A. (1995). Adaptive median filters: New algorithms and results. IEEE Transactions on Image Processing, 4(4), 499–502.

    Article  Google Scholar 

  18. Meher, S. K., & Singhawat, B. (2014). An improved recursive and adaptive median filter for high density impulse noise. AEU-International Journal of Electronics and Communications, 68(12), 1173–1179.

    Google Scholar 

  19. Chan, R. H., Ho, C. W., & Nikolova, M. (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(10), 1479–1485.

    Article  Google Scholar 

  20. Zhang, J. (2010). An efficient median filter based method for removing random-valued impulse noise. Digital Signal Processing: A Review Journal, 20(4), 1010–1018.

    Article  Google Scholar 

  21. Hsieh, M. H., Cheng, F. C., Shie, M. C., & Ruan, S. J. (2013). Fast and efficient median filter for removing 1–99% levels of salt-and-pepper noise in images. Engineering Applications of Artificial Intelligence, 26(4), 1333–1338.

    Article  Google Scholar 

  22. Erkan, U., Gökrem, L., & Enginoğlu, S. (2018). Different applied median filter in salt and pepper noise. Computers & Electrical Engineering, 70, 789–798.

    Article  Google Scholar 

  23. Z. Gao, (2018). An adaptive median filtering of salt and pepper noise based on local pixel distribution. In: International Conference on transportation & logistics, information & communication, smart city (TLICSC 2018), vol. 161, pp. 473–483.

  24. Akkoul, S., Lédée, R., Leconge, R., & Harba, R. (2010). A new adaptive switching median filter. IEEE Signal Processing Letters, 17(6), 587–590.

    Article  Google Scholar 

  25. Nallaperumal, K., Varghese, J., Saudia, S., Krishnaveni, K., Mathew, S. P., and Kumar, P. (2006). An efficient switching median filter for salt & pepper impulse noise reduction, In: 2006 1st International conference on digital information management ICDIM, pp. 161–166.

  26. Varghese, J. (2007). Adaptive switching rank-ordered impulse noise filters: New techniques, results and analysis. International Journal of Imaging Science and Engineering, 1(2), 52–59.

    MathSciNet  Google Scholar 

  27. Eng, H., Member, S., Ma, K., & Member, S. (2001). Noise adaptive soft-switching median filter. IEEE Transactions on Image Processing, 10(2), 242–251.

    Article  Google Scholar 

  28. Kal, K., Toh, V., Ashidi, N., & Isa, M. (2010). Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Processing Letters, 17(3), 281–284.

    Article  Google Scholar 

  29. Wang, G., Li, D., Pan, W., & Zang, Z. (2010). Modified switching median filter for impulse noise removal. Signal Processing, 90(12), 3213–3218.

    Article  MATH  Google Scholar 

  30. Nallaperumal, K., Varghese, J., Saudia, S., Mathew, S. P., Krishnaveni, K., & Kumar, P. (2007). A new adaptive class of filter operators for salt & pepper impulse corrupted images. International Journal of Imaging Science and Engineering, 1(2), 44–51.

    Google Scholar 

  31. Jayaraj, V., & Ebenezer, D. (2010). A new switching-based median filtering scheme and algorithm for removal of high-density salt and pepper noise in images. EURASIP Journal on Advances in Signal Processing, 1, 2010.

    Google Scholar 

  32. Vedran N., and Zlatko, P. (2015). Adaptive center weighted median filter. In: 7th international scientific and expert conference team.

  33. Faragallah, O. S., & Ibrahem, H. M. (2016). Adaptive switching weighted median filter framework for suppressing salt-and-pepper noise. AEU-International Journal of Electronics and Communications, 70(8), 1034–1040.

    Google Scholar 

  34. Nair, M. S., & Ameera Mol, P. M. (2014). An efficient adaptive weighted switching median filter for removing high density impulse noise. Journal of the Institution Engineers (India): Series B, 95(3), 255–278.

    Article  Google Scholar 

  35. Khan, S., & Lee, D. H. (2017). An adaptive dynamically weighted median filter for impulse noise removal. EURASIP Journal on Advances in Signal Processing, 1, 2017.

    Google Scholar 

  36. Zhang, P., & Li, F. (2014). A new adaptive weighted mean filter for removing salt-and-pepper noise. IEEE Signal Processing Letters, 21(10), 1280–1283.

    Article  Google Scholar 

  37. Miao, Z., & Jiang, X. (2013). Weighted iterative truncated mean filter. IEEE Transactions on Signal Processing, 61(16), 4149–4160.

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, W. (2006). An efficient detail-preserving approach for removing impulse noise in images. IEEE Signal Processing Letters, 13(7), 413–416.

    Article  Google Scholar 

  39. Bednar, J. B., & Watt, T. L. (1984). Alpha-trimmed means and their relationship to median filters. IEEE Transaction on Acoustics, Speech, and Signal Processing, 32(1), 145–153.

    Article  Google Scholar 

  40. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  41. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physical Elsevier Science, 60, 259–268.

    MathSciNet  MATH  Google Scholar 

  42. Yin, W. (2005). An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation, 10027, 460–489. https://doi.org/10.1137/040605412.

    Article  MathSciNet  MATH  Google Scholar 

  43. Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3), 613–627.

    Article  MathSciNet  MATH  Google Scholar 

  44. Chang, S. G., Member, S., Yu, B., Member, S., & Vetterli, M. (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing, 9(9), 1532–1546.

    Article  MathSciNet  MATH  Google Scholar 

  45. Starck, J. L., Candes, E., & Donoho, D. L. (2002). The curvelet transform for image denoising. IEEE Transactions in Image Processing, 1(6), 670–684.

    Article  MathSciNet  MATH  Google Scholar 

  46. Joshi A., and Boyat, A. K. (2014). Impact of wavelet transform and median filtering on removal of salt and pepper noise in digital images. In: 2014 internationai conference on issues and challenges in intelligent computing techniques (ICICT), Vol. 839, pp. 838–843.

  47. Awad, A., & Awad, A. (2018). Removal of fixed-valued impulse noise based on probability of existence of the image pixel. International Journal of Electrical & Computer Engineering, 8(4), 2106–2114.

    Google Scholar 

  48. Samantaray, A. K., & Mallick, P. (2015). Decision based adaptive neighborhood median filter. Procedia Computer Science, 48(C), 222–227.

    Article  Google Scholar 

  49. Esakkirajan, S., Verrakumar, T., Subramanyam, N., Adabala, PremChand, & C.H. (2011). Removal of high density salt & pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Processing Letters, 18(5), 287–290.

    Article  Google Scholar 

  50. Srinivasan, K. S., & Ebenezer, D. (2007). A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Processing Letters, 14(3), 189–192.

    Article  Google Scholar 

  51. Erkan, U., & Gökrem, L. (2018). A new method based on pixel density in salt and pepper noise removal. Turkish Journal of Electrical Engineering & Computer Sciences, 26(1), 162–171.

    Article  Google Scholar 

  52. Balasubramanian, G., Chilambuchelvan, A., Vijayan, S., & Gowrison, G. (2016). Probabilistic decision based filter to remove impulse noise using patch else trimmed median. AEU-International Journal of Electronics and Communications, 70(4), 471–481.

    Google Scholar 

  53. Chen, J., Zhan, Y., Cao, H., & Wu, X. (2018). Adaptive probability filter for removing salt and pepper noises. IET Image Processing, 12(6), 863–871.

    Article  Google Scholar 

  54. Sen, A. P., & Rout, N. K. (2020). Probabilistic decision based average trimmed filter for the removal of high-density salt and pepper noise. International Journal of Recent Technology and Engineering, 8(5), 4350–4357.

    Google Scholar 

  55. Sen, A. P., & Rout, N. K. (2020). Probabilistic decision based improved trimmed median filter to remove high-density salt and pepper noise. Pattern Recognition and Image Analysis Springer, 30(3), 401–415.

    Article  Google Scholar 

  56. Sen, A. P., & Rout, N. K. (2020). Removal of high-density impulsive noise in giemsa stained blood smear image using probabilistic decision based average trimmed filter. In P. K. Pattnaik, S. Mohanty, & S. Mohanty (Eds.), Smart healthcare analytics in IoT enabled environment (pp. 127–141). Springer.

    Chapter  Google Scholar 

  57. Faro A., Giordano D., Spampinato C. (2006) Neural Network Combined with Fuzzy Logic to Remove Salt and Pepper Noise in Digital Images. In: Tiwari A., Roy R., Knowles J., Avineri E., Dahal K. (eds) Applications of Soft Computing. Advances in Intelligent and Soft Computing, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36266-1_3.

  58. Sen, A. P., & Rout, N. K. (2020). Improved probabilistic decision-based trimmed median filter for detection and removal of high-density impulsive noise. IET Image Processing, 14(17), 4486–4498.

    Article  Google Scholar 

  59. Elad, M., & Aharon, M. (2006). Image Denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Article  MathSciNet  Google Scholar 

  60. Mairal, J., Bach, F., and Sapiro, G. (2009). Non-local sparse models for image restoration. In: IEEE 12th international conference on computer vision (ICCV), Vol. 2, pp. 2272–2279.

  61. Dong, W., Zhang, L., Shi, G., & Member, S. (2013). Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 22(4), 1620–1630.

    Article  MathSciNet  MATH  Google Scholar 

  62. Xu, J., Zhang, L., Zuo, W., Zhang, D., and Feng, X. (2015). Patch group based nonlocal self-similarity prior learning for image denoising. In: Proceedings of the IEEE international conference on computer vision (2015) 2015 international conference on computer vision, ICCV, pp. 244–252.

  63. Dabov, K., Member, S., Foi, A., Katkovnik, V., Egiazarian, K., & Member, S. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.

    Article  MathSciNet  Google Scholar 

  64. Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M., & Ghadimi, N. (2018). Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Applied Thermal Engineering, 137, 395–405.

    Article  Google Scholar 

  65. Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A., & Ghadimi, N. (2019). Robust optimization based optimal chiller loading under cooling demand uncertainty. Applied Thermal Engineering, 148, 1081–1091.

    Article  Google Scholar 

  66. Ghadimi, N., Akbarimajd, A., Shayeghi, H., & Abedinia, O. (2018). Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy, 161, 130–142.

    Article  Google Scholar 

  67. Gao, W., Darvishan, A., Toghani, M., Mohammadi, M., Abedinia, O., & Ghadimi, N. (2019). Different states of multi-block based forecast engine for price and load prediction. International Journal of Electrical Power & Energy Systems, 104, 423–435.

    Article  Google Scholar 

  68. Abedinia, O., Zareinejad, M., Doranehgard, M. H., Fathi, G., & Ghadimi, N. (2019). Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. Journal of Cleaner Production, 215, 878–889.

    Article  Google Scholar 

  69. Jain, V., Sciences, C., and Seung, H. S. (2009). Natural image denoising with convolutional networks. In: Advances in neural information processing systems 21-proceedings of the 2008 conference, pp. 769–776.

  70. Xie, J., Xu, L., and Chen, E. (2012). Image Denoising and inpainting with deep neural networks. In: Advances in neural information processing systems, pp. 341–349.

  71. Burger, H. C., Schuler, C. J., and Harmeling, S. (2012). Image denoising : Can plain neural networks compete with BM3D? In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp. 2392–2399.

  72. Zhang, F., Cai, N., Wu, J., Cen, G., Wang, H., & Chen, X. (2018). Image denoising method based on a deep convolution neural network. IET Image Processing, 12(4), 485–493.

    Article  Google Scholar 

  73. Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142–3155.

    Article  MathSciNet  MATH  Google Scholar 

  74. Jin, L., Zhang, W., Ma, G., & Song, E. (2019). Learning deep CNNs for impulse noise removal in images. Journal of Visual Communication and Image Representation, 62, 193–205.

    Article  Google Scholar 

  75. Bae, W., Yoo, J., and Ye, J. C. (2017) “Beyond deep residual learning for image restoration : Persistent homology-guided manifold simplification. In: Computer vision and pattern recognition, pp. 145–153.

  76. Yang, D., & Sun, J. (2018). BM3D-net: A Convolutional neural network for transform-domain collaborative filtering. IEEE Signal Processing Letters, 25(1), 55–59.

    Article  Google Scholar 

  77. Fu, B., Zhao, X., Li, Y., Wang, X., & Ren, Y. (2019). A convolutional neural networks denoising approach for salt and pepper noise. Multimedia Tools and Applications, 78(21), 30707–30721.

    Article  Google Scholar 

  78. Xing, Y., Xu, J., Tan, J., Li, D., & Zha, W. (2019). Deep CNN for removal of salt and pepper noise. IET Image Processing, 13(9), 1550–1560.

    Article  Google Scholar 

  79. Leavline, E. J., Antony, D. A., & Singh, G. (2013). Salt and pepper noise detection and removal in gray scale images : An experimental analysis. International Journal of Signal Processing, Image Processing and Pattern Recognition, 6(5), 343–352.

    Article  Google Scholar 

  80. Teoh, S. H., & Ibrahim, H. (2012). Median filtering frameworks for reducing impulse noise from grayscale digital images : A literature survey. International Journal of Future Computer and Communication, 1(4), 323–326.

    Article  Google Scholar 

  81. Mohan, K., & Aroquiaraj, I. L. (2014). Comparative analysis of saptial filtering techniques in ultrasound images. International Journal of Computer Intelligence and Informatics, 4(3), 207–213.

    Google Scholar 

  82. Tania, S., & Rowaida, R. (2016). A Comparative Study of Various Image Filtering Techniques for Removing Various Noisy Pixels in Aerial Image. International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(3), 113–124.

    Article  Google Scholar 

  83. Boo, S. T., Ibrahim, H., Kal, K., Toh, V., Member, S., and Detection, A. N. (2009). An improved progressive switching median filter. In International conference on future computer and communication, no. 3, pp. 136–139.

  84. Turkhade, P., & Hore, P. U. W. (2016). Analysis for image quality improvement using denoise filtering techniques. International Journal of Advanced Research in Computer Communication Engineering, 5(4), 423–428.

    Google Scholar 

  85. Kumar, P., Chandra, M., & Kumar, S. (2019). Trimmed median filter for removal of noise from medical image. Lecture Notes in Electrical Engineering, Springer Nature, 476, 201–209.

    Article  Google Scholar 

  86. Narayanan, S. A., Arumugam, G., & Bijlani, P. K. (2013). Trimmed median filters for salt and pepper noise removal. International Journal of Emerging Trends & Technology in Computer Science, 2(1), 35–40.

    Google Scholar 

  87. Mafi, M., Walter, I., and Adjouadi, M. (2020). High Impulse noise intensity removal in natural images using convolution neural network. In: 10th annual computing and communication workshop and conference, pp. 673–677.

  88. Hinton, G. E. (2017). Rectified linear units improve restricted boltzmann machines. Journal of Applied Biomechanics, 33(5), 384–387.

    Google Scholar 

  89. Ioffe S., and Szegedy, C. (2015). Batch normalization : Accelerating deep network training by reducing internal covariate shift. In: Proceedings of the international conference on machine learning, pp. 448–456.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Kumar Rout.

Ethics declarations

Conflict of interests

The process of writing and the content of the article does not give grounds for raising the issue of a conflict of interest.

Compliance with Ethical Standards

This article is a completely original work of its authors; it has not been published before and will not be sent to other publications until the PRIA editorial board decides not to accept it for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, A.P., Rout, N.K. A Comparative Analysis of the Algorithms for De-noising Images Contaminated with Impulse Noise. Sens Imaging 23, 11 (2022). https://doi.org/10.1007/s11220-022-00382-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-022-00382-6

Keywords

Navigation