Skip to main content
Log in

Merging structural biology with chemical biology: Structural Chemistry at Eskitis

  • Review Article
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This review introduces the Structural Chemistry Program at Griffith University’s Eskitis Institute, and provides a brief overview over its current and future research portfolio. Capitalising on the co-location with the Queensland Compound Library (QCL), Australia’s only small molecule repository, our laboratory investigates the structure and function of proteins with the aim of learning about their molecular mechanisms. Consequently, these studies also feed into drug discovery and design. The thematic focus of our Program is on proteins involved in infection, inflammation and neurological diseases, and this review highlights a few of our recent research efforts in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hofmann A, Wlodawer A (2002) PCSB—a program collection for structural biology and biophysical chemistry. Bioinformatics 18:209–210

    Article  CAS  Google Scholar 

  2. Hofmann A (2008) ACDP—a Java application for data processing and analysis of protein circular dichroism spectra. J Appl Crystallogr 42:137–139

    Article  Google Scholar 

  3. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  Google Scholar 

  4. Buskirk AR, Liu DR (2005) Creating small-molecule-dependent switches to modulate biological functions. Chem Biol 12:151–161

    Article  CAS  Google Scholar 

  5. Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432:846–854

    Article  CAS  Google Scholar 

  6. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16:3–50

    Article  CAS  Google Scholar 

  7. Spring DR (2003) Diversity-oriented synthesis; a challenge for synthetic chemists. Org Biomol Chem 1:3867–3870

    Article  CAS  Google Scholar 

  8. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  Google Scholar 

  9. Lipinski C, Lombardo F, Dominy B, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  10. Leeson P, Davis A, Steele J (2004) Drug-like properties: guiding principles for design-or chemical prejudice? Drug Discov Today Technol 1:189–195

    Article  CAS  Google Scholar 

  11. Teague SJ, Davis AM, Leeson PD, Oprea T (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed Engl 38:3743–3747

    Article  CAS  Google Scholar 

  12. Hann MM, Oprea TI (2004) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 8:255–263

    Article  CAS  Google Scholar 

  13. Leeson PD, Davis AM (2004) Time-related differences in the physical property profiles of oral drugs. J Med Chem 47:6338–6348

    Article  CAS  Google Scholar 

  14. Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12:306–317

    Article  CAS  Google Scholar 

  15. Lipinski CA, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  CAS  Google Scholar 

  16. Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5:262–275

    Article  CAS  Google Scholar 

  17. Golebiowski A, Klopfenstein SR, Portlock DE (2001) Lead compounds discovered from libraries. Curr Opin Chem Biol 5:273–284

    Article  CAS  Google Scholar 

  18. Prien O (2005) Target-family-oriented focused libraries for kinases—conceptual design aspects and commercial availability. ChemBioChem 6:500–505

    Article  CAS  Google Scholar 

  19. Player MR (2004) Target-based compound library design and synthesis. Drug Discov Today Targets 3:48–50

    Article  Google Scholar 

  20. De Simone RW, Currie KS, Mitchell SA, Darrow JW, Pippin DA (2004) Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 7:473–493

    Google Scholar 

  21. Burke MD, Berger EM, Schreiber SL (2003) Generating diverse skeletons of small molecules combinatorially. Science 302:613–618

    Article  CAS  Google Scholar 

  22. Fergus S, Bender A, Spring DR (2005) Assessment of structural diversity in combinatorial synthesis. Curr Opin Chem Biol 9:304–309

    Article  CAS  Google Scholar 

  23. Camp D (2007) Establishment of an open access compound management facility in Australia to stimulate applied, basic and translational biomedical research. Drug Discov World 8:61–66

    Google Scholar 

  24. Camp D, Avery VM, Street I, Quinn RJ (2007) Progress towards establishing an open access molecular screening capability in the Australasian region. ACS Chem Biol 2:764–767

    Article  CAS  Google Scholar 

  25. Mueller D, Davis RA, Duffy S, Avery VM, Camp D, Quinn RJ (2009) Antimalarial activity of azafluorenone alkaloids from the Australian tree Mitrephora diversifolia. J Nat Prod 72:1538–1540

    Article  CAS  Google Scholar 

  26. Davis RA, Duffy S, Avery VM, Camp D, Hooper JNA, Quinn RJ (2010) (+)-7-Bromotrypargine, an antimalarial beta-carboline from the Australian marine Sponge, Ancorina sp. Tetrahedron Lett 51:583–585

    Article  CAS  Google Scholar 

  27. Feng Y, Davis RA, Sykes ML, Avery VM, Camp D, Quinn RJ (2010) Antitrypanosomal cyclic polyketide peroxides from the Australian marine sponge Plakortis sp. J Nat Prod 73:716–719

    Article  CAS  Google Scholar 

  28. Feng Y, Davis RA, Sykes ML, Avery VM, Carroll AR, Camp D, Quinn RJ (2010) Antitrypanosomal pyridoacridine alkaloids from the Australian ascidian, Polysyncraton echinatum. Tetrahedron Lett 51:2477–2479

    Article  CAS  Google Scholar 

  29. Yang X, Davis RA, Buchanan MS, Duffy S, Avery VM, Camp D, Quinn RJ (2010) Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J Nat Prod 73:985–987

    Article  CAS  Google Scholar 

  30. Lopez M, Paul B, Hofmann A, Innocenti A, Vullo D, Supuran C, Poulsen S (2009) S-glycosyl primary sulfonamides—a new structural class for selective inhibition of cancer-associated carbonic anhydrases. J Med Chem 52:6421–6432

    Article  CAS  Google Scholar 

  31. Besier B (2007) New anthelmintics for livestock: the time is right. Trends Parasitol 23:21–24

    Article  CAS  Google Scholar 

  32. Kutz S, Dobson A, Hoberg E (2009) Where are the parasites? Science 326:1187–1188

    Article  CAS  Google Scholar 

  33. Cantacessi C, Campbell BE, Visser A, Geldhof P, Nolan MJ, Nisbet AJ, Matthews JB, Loukas A, Hofmann A, Otranto D et al (2009) A portrait of the “SCP/TAPS” proteins of eukaryotes—developing a framework for fundamental research and biotechnological outcomes. Biotechnol Adv 27:376–388

    Article  CAS  Google Scholar 

  34. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  CAS  Google Scholar 

  35. Barford D, Das A, Egloff M (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164

    Article  CAS  Google Scholar 

  36. Hu M, Abs El-Osta YG, Campbell BE, Boag PR, Nisbet AJ, Beveridge I, Gasser RB (2007) Trichostrongylus vitrinus (Nematoda: Strongylida): molecular characterisation and transcriptional analysis of Tv-stp-1, a serine/threonine phosphatase gene. Exp Parasitol 117:22–34

    Article  CAS  Google Scholar 

  37. Campbell B, Rabelo E, Hofmann A, Hu M, Gasser R (2010) Characterization of a Caenorhabditis elegans glc seven-like phosphatase (gsp) orthologue from Haemonchus contortus (Nematoda). Mol Cell Probes (in press)

  38. Campbell BE, McCluskey A, Hofmann A, Gasser R (2010) Serine/threonine phosphatases in socioeconomically important parasitic nematodes—prospects as novel drug targets? Biotechnol Adv (in press)

  39. Nolan MJ, Hofmann A, Jex AR, Gasser RB (2010) A theoretical study to establish the relationship between the three-dimensional structure of triose-phosphate isomerase of Giardia duodenalis and point mutations in the respective gene. Mol Cell Probes (in press)

  40. Loukas A, Bethony J, Brooker S, Hotez P (2006) Hookworm vaccines: past, present, and future. Lancet Infect Dis 6:733–741

    Article  Google Scholar 

  41. Muchowski PJ, Zhang L, Chang ER, Soule HR, Plow EF, Moyle M (1994) Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18. J Biol Chem 269:26419–26423

    CAS  Google Scholar 

  42. Asojo OA, Goud G, Dhar K, Loukas A, Zhan B, Deumic V, Liu S, Borgstahl GEO, Hotez PJ (2005) X-ray structure of Na-ASP-2, a pathogenesis-related-1 protein from the nematode parasite, Necator americanus, and a vaccine antigen for human hookworm infection. J Mol Biol 346:801–814

    Article  CAS  Google Scholar 

  43. Henriksen A, King TP, Mirza O, Monsalve RI, Meno K, Ipsen H, Larsen JN, Gajhede M, Spangfort MD (2001) Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins 45:438–448

    Article  CAS  Google Scholar 

  44. Fernández C, Szyperski T, Bruyère T, Ramage P, Mösinger E, Wüthrich K (1997) NMR solution structure of the pathogenesis-related protein P14a. J Mol Biol 266:576–593

    Article  Google Scholar 

  45. Hofmann A, Zdanov A, Genschik P, Ruvinov S, Filipowicz W, Wlodawer A (2000) Structure and mechanism of activity of the cyclic phosphodiesterase of Appr>p, a product of the tRNA splicing reaction. EMBO J 19:6207–6217

    Article  CAS  Google Scholar 

  46. Hofmann A, Huber R (2003) Structural conservation and functional versatility: allostery as a common annexin feature. In: Bandorowicz-Pikula J (ed) Annexins: biological importance and annexin-related pathologies. Landes Bioscience, Georgetown

    Google Scholar 

  47. Sopkova J, Renouard M, Lewit-Bentley A (1993) The crystal structure of a new high-calcium form of annexin V. J Mol Biol 234:816–825

    Article  CAS  Google Scholar 

  48. Pathuri P, Nguyen ET, Svard SG, Luecke H (2007) Apo and calcium-bound crystal structures of alpha-11 giardin, an unusual annexin from Giardia lamblia. J Mol Biol 368:493–508

    Article  CAS  Google Scholar 

  49. Pathuri P, Nguyen ET, Ozorowski G, Svärd SG, Luecke H (2009) Apo and calcium-bound crystal structures of cytoskeletal protein alpha-14 giardin (annexin E1) from the intestinal protozoan parasite Giardia lamblia. J Mol Biol 385:1098–1112

    Article  CAS  Google Scholar 

  50. Hofmann A (2004) Annexins in the plant kingdom—perspectives and potentials. Annexins 1:51–61

    CAS  Google Scholar 

  51. Dabitz N, Hu NJ, Yusof AM, Tranter N, Winter A, Daley M, Zschörnig O, Brisson A, Hofmann A (2005) Structural determinants for plant annexin-membrane interactions. Biochemistry 44:16292–16300

    Article  CAS  Google Scholar 

  52. Hu N, Yusof A, Winter A, Osman A, Reeve A, Hofmann A (2008) The crystal structure of calcium-bound annexin Gh1 from Gossypium hirsutum indicates different mechanisms of membrane binding in plant and animal annexins. J Biol Chem 283:18314–18322

    Article  CAS  Google Scholar 

  53. Winter A, Yusof AM, Gao E, Yan HL, Hofmann A (2006) Biochemical characterization of annexin B1 from Cysticercus cellulosae. FEBS J 273:3238–3247

    Article  CAS  Google Scholar 

  54. Römisch J, Heimburger N (1990) Purification and characterization of six annexins from human placenta. Biol Chem Hoppe Seyler 371:383–388

    Google Scholar 

  55. Weiland M, Palm J, Griffiths W, McCaffery J, Svärd S (2003) Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. Int J Parasitol 33:1341–1351

    Article  CAS  Google Scholar 

  56. Capila I, Hernaiz M, Mo Y, Mealy T, Campos B, Dedman J, Linhardt R, Seaton B (2001) Annexin V-heparin oligosaccharide complex suggests heparan sulfate-mediated assembly on cell surface. Structure 9:57–64

    Article  CAS  Google Scholar 

  57. Hofmann A, Osman A, Leow CY, Driguez P, Jones M (2010) Parasite annexins—new molecules with potential for drug and vaccine development. BioEssays (in press)

  58. Kaneko N, Ago H, Matsuda R, Inagaki E, Miyano M (1997) Crystal structure of annexin V with its ligand K-201 as a calcium channel activity inhibitor. J Mol Biol 274:16–20

    Article  CAS  Google Scholar 

  59. Hofmann A, Escherich A, Lewit-Bentley A, Benz J, Raguenes-Nicol C, Russo-Marie F, Gerke V, Moroder L, Huber R (1998) Interactions of benzodiazepine derivatives with annexins. J Biol Chem 273:2885–2894

    Article  CAS  Google Scholar 

  60. Parente L, Solito E (2004) Annexin 1: more than an anti-phospholipase protein. Inflamm Res 53:125–132

    Article  CAS  Google Scholar 

  61. Meers P, Mealy T, Pavlotsky N, Tauber AI (1992) Annexin I-mediated vesicular aggregation: mechanism and role in human neutrophils. Biochemistry 31:6372–6382

    Article  CAS  Google Scholar 

  62. Bitto E, Li M, Tikhonov AM, Schlossman ML, Cho W (2000) Mechanism of annexin I-mediated membrane aggregation. Biochemistry 39:13469–13477

    Article  CAS  Google Scholar 

  63. Streicher WW, Lopez MM, Makhatadze GI (2009) Annexin I and annexin II n-terminal peptides binding to s100 protein family members: specificity and thermodynamic characterization. Biochemistry 48:2788–2798

    Article  CAS  Google Scholar 

  64. Hu N, Bradshaw J, Lauter H, Buckingham J, Solito E, Hofmann A (2008) Membrane-induced folding and structure of membrane-bound annexin A1 N-terminal peptides—implications for annexin-induced membrane aggregation. Biophys J 94:1773–1781

    Article  CAS  Google Scholar 

  65. Burgoyne R (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    Article  CAS  Google Scholar 

  66. Genin A, Davis S, Meziane H, Doyere V, Jeromin A, Roder J, Mallet J, Laroche S (2001) Regulated expression of the neuronal calcium sensor-1 gene during long-term potentiation in the dentate gyrus in vivo. Neuroscience 106:571–577

    Article  CAS  Google Scholar 

  67. Braunewell K, Brackmann M, Manahan-Vaughan D (2003) Group I mGlu receptors regulate the expression of the neuronal calcium sensor protein VILIP-1 in vitro and in vivo: implications for mGlu receptor-dependent hippocampal plasticity. Neuropharmacology 44:707–715

    Article  CAS  Google Scholar 

  68. Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R (2002) Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22:8476–8486

    CAS  Google Scholar 

  69. Bahi N, Friocourt G, Carrié A, Graham ME, Weiss JL, Chafey P, Fauchereau F, Burgoyne RD, Chelly J (2003) IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with Neuronal Calcium Sensor-1 and regulates exocytosis. Hum Mol Genet 12:1415–1425

    Article  CAS  Google Scholar 

  70. Cheng HM, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J et al (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108:31–43

    Article  CAS  Google Scholar 

  71. Mahloogi H, Gonzalez-Guerrico AM, Lopez De Cicco R, Bassi DE, Goodrow T, Braunewell KH, Klein-Szanto AJ (2003) Overexpression of the calcium sensor visinin-like protein-1 leads to a cAMP-mediated decrease of in vivo and in vitro growth and invasiveness of squamous cell carcinoma cells. Cancer Res 63:4997–5004

    CAS  Google Scholar 

  72. Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3, 4, 5)P3 and PI(4, 5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  CAS  Google Scholar 

  73. Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100:603–606

    Article  CAS  Google Scholar 

  74. Tang K, Hofmann A, Freund C, Danker K (2009) The cytoplasmic tail of the alpha1 integrin subunit associates with phosphoinositides. Submitted

  75. O’Callaghan DW, Haynes LP, Burgoyne RD (2005) High-affinity interaction of the N-terminal myristoylation motif of the neuronal calcium sensor protein hippocalcin with phosphatidylinositol 4,5-bisphosphate. Biochem J 391:231–238

    Article  Google Scholar 

  76. Braunewell KH, Brackmann M, Hofmann A (2006) VILIP-1, a novel regulator of the guanylate cyclase transduction system in neurons. Calcium Bind Proteins 1:12–15

    Google Scholar 

  77. Brackmann M, Hofmann A, Braunewell KH (2006) Structure, function and expression of members of the vilip (visinin-like protein) subfamily of neuronal calcium sensor proteins. In: Philippov P, Koch K (eds) Neuronal calcium sensor proteins. Nova Science Publisher, Hauppauge

    Google Scholar 

  78. Braunewell K, Paul B, Altarche-Xifro W, Noack C, Lange K, Hofmann A (2010) Interactions of Visinin-like proteins with phospho-inositides. Aust J Chem 63:350–356

    Article  CAS  Google Scholar 

  79. Krylov D, Hurley J (2001) Identification of proximate regions in a complex of retinal guanylyl cyclase 1 and guanylyl cyclase-activating protein-1 by a novel mass spectrometry-based method. J Biol Chem 276:30648–30654

    Article  CAS  Google Scholar 

  80. Chen K, Wang L, Chang L (2009) Regulatory elements and functional implication for the formation of dimeric visinin-like protein-1. J Pept Sci 15:89–94

    Article  CAS  Google Scholar 

  81. McArdle B, Hofmann A (2008) Coronin structure and implications. In: Clemen C, Eichinger L, Rybakin V (eds) The coronin family of proteins. Landes Bioscience, Austin

    Google Scholar 

  82. Hudson AM, Cooley L (2008) Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins. Subcell Biochem 48:6–19

    Article  Google Scholar 

  83. Smith TF (2008) Diversity of WD-repeat proteins. Subcell Biochem 48:20–30

    Article  Google Scholar 

  84. Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185

    Article  CAS  Google Scholar 

  85. Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085–2097

    Article  CAS  Google Scholar 

  86. Appleton B, Wu P, Wiesmann C (2006) The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 14:87–96

    Article  CAS  Google Scholar 

  87. de Hostos EL (1999) The coronin family of actin-associated proteins. Trends Cell Biol 9:345–350

    Article  Google Scholar 

  88. Rybakin V, Clemen C (2005) Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. BioEssays 27:625–632

    Article  CAS  Google Scholar 

  89. Rosentreter A, Hofmann A, Xavier CP, Stumpf M, Noegel AA, Clemen CS (2007) Coronin 3 involvement in F-actin-dependent processes at the cell cortex. Exp Cell Res 313:878–895

    Article  CAS  Google Scholar 

  90. Gatfield J, Albrecht I, Zanolari B, Steinmetz M, Pieters J (2005) Association of the leukocyte plasma membrane with the actin cytoskeleton through coiled coil-mediated trimeric coronin 1 molecules. Mol Biol Cell 16:2786–2798

    Article  CAS  Google Scholar 

  91. Gandhi M, Goode B (2008) Coronin: the double-edged sword of actin dynamics. In: Clemen C, Eichinger L, Rybakin V (eds) The coronin family of proteins. Landes Bioscience, Georgetown

    Google Scholar 

  92. Xavier C, Rosentreter A, Reimann J, Cornfine S, Linder S, van Vliet V, Hofmann A, Morgan RO, Fernandez M, Stumpf M et al (2009) Structural and functional diversity of novel coronin-1C (CRN2) isoforms. J Mol Biol 393:287–299

    Article  CAS  Google Scholar 

  93. Cai L, Holoweckyj N, Schaller M, Bear J (2005) Phosphorylation of coronin 1B by protein kinase C regulates interaction with Arp2/3 and cell motility. J Biol Chem 280:31913–31923

    Article  CAS  Google Scholar 

  94. Spoerl Z, Stumpf M, Noegel AA, Hasse A (2002) Oligomerization, F-actin interaction, and membrane association of the ubiquitous mammalian coronin 3 are mediated by its carboxyl terminus. J Biol Chem 277:48858–48867

    Article  CAS  Google Scholar 

  95. Schutt CE, Lindberg U (2000) The new architectonics: an invitation to structural biology. Anat Rec 261:198–216

    Article  CAS  Google Scholar 

  96. DeLano W (2002) The PyMOL Molecular Graphics System. http://www.pymol.org

Download references

Acknowledgments

Research in the Structural Chemistry Program is funded by the Australian Research Council, Griffith University, the James N Kirby Foundation, the National Health and Medical Research Council (Fellowship to CKW) and the Rebecca L Cooper Foundation. We gratefully acknowledge the Australian Synchrotron for beam time awards. Funding to establish the QCL was received from Griffith University and the Queensland State Government's Department of Employment, Economic Development and Innovation. Further support has been received from the Agilent Foundation and Prostate Cancer foundation of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, A., Wang, C.K., Osman, A. et al. Merging structural biology with chemical biology: Structural Chemistry at Eskitis. Struct Chem 21, 1117–1129 (2010). https://doi.org/10.1007/s11224-010-9654-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9654-2

Keywords

Navigation