Skip to main content
Log in

Superacidic porous polymer catalyst and its application in esterification of carboxylic acid

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Two solid acid catalysts, SAC1 and SAC2, with porous structure obtained from mesoporous hard template were synthesized and characterized by Fourier transform infrared spectroscopy, acid-base titration, nitrogen adsorption/desorption, scanning electron microscopy, and their catalytic activity in esterification of carboxylic acid. Acid-base titration showed that these catalysts have acidic concentration of 1.02–1.10 mmol/g. The catalytic test in esterification of 6-bromohexanoic acid with methanol showed that SAC1 with perfluorinated sulfonic acid is catalytically more active than SAC2 with aryl sulfonic acid. In spite of lower acid loading, SAC1 showed a comparable catalytic activity with commercially available solid acid catalyst Amberlyst 15 with higher acid capacity (4.80 mmol/g) due to high acidity and well-defined pore structure. SAC1 could be recycled up to three times without significant loss in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harmer MA, Sun Q (2001) Solid acid catalysis using ion-exchange resins. Appl Catal, A 221(1–2):45–62. doi:10.1016/S0926-860X(01)00794-3

    Article  CAS  Google Scholar 

  2. Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11(9):1285–1308

    Article  CAS  Google Scholar 

  3. Sherrington DC (1998) Preparation, structure and morphology of polymer supports. Chem. Comm. (21):2275–2286

  4. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25(6):711–779

    Article  CAS  Google Scholar 

  5. Kirschning A (2004) Immobilized catalysts: solid phases, immobilization and applications, vol 242. Springer Science & Business Media

  6. Svec F, Fréchet JM (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273(5272):205

    Article  CAS  Google Scholar 

  7. Melero JA, van Grieken R, Morales G (2006) Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chem Rev 106(9):3790–3812

    Article  CAS  Google Scholar 

  8. Ishihara K, Hasegawa A, Yamamoto H (2001) Polystyrene-Bound Tetrafluorophenylbis (triflyl) methane as an Organic-Solvent-Swellable and Strong Brønsted Acid Catalyst. Angew Chem 113(21):4201–4203

    Article  Google Scholar 

  9. Yin Y, Zhao G, Li G-L (2005) Synthesis of polystyrene-bound perfluoroalkyl sulfonic acids and the application of their ytterbium salts in multicomponent reactions (MCRs). Tetrahedron 61(51):12042–12052

    Article  CAS  Google Scholar 

  10. Olah GA, Prakash GS, Sommer J (1979) Acids up to billions of times stronger than sulfuric acid have opened up fascinating new areas of chemistry. Chemistry 1:3

    Google Scholar 

  11. Chang Y, Brunello GF, Fuller J, Hawley M, Kim YS, Disabb-Miller M, Hickner MA, Jang SS, Bae C (2011) Aromatic ionomers with highly acidic sulfonate groups: acidity, hydration, and proton conductivity. Macromolecules 44(21):8458–8469

    Article  CAS  Google Scholar 

  12. Shin J, Jensen SM, Ju J, Lee S, Xue Z, Noh SK, Bae C (2007) Controlled functionalization of crystalline polystyrenes via activation of aromatic CH bonds. Macromolecules 40(24):8600–8608

    Article  CAS  Google Scholar 

  13. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95(7):2457–2483

    Article  CAS  Google Scholar 

  14. Popeney CS, Levins CM, Guan Z (2011) Systematic Investigation of Ligand Substitution Effects in Cyclophane-Based Nickel (II) and Palladium (II) Olefin Polymerization Catalysts (1). Organometallics 30(8):2432–2452

    Article  CAS  Google Scholar 

  15. Zhang Y, Zhao L, Patra PK, Ying JY (2008) Synthesis and catalytic applications of mesoporous polymer colloids in olefin hydrosilylation. Advanced Synthesis & Catalysis 350(5):662–666

    Article  CAS  Google Scholar 

  16. Kim J-H, Park EJ, Lim D-K, Singh B, Bae C, Song S-J (2015) Fabrication of Dense Cerium Pyrophosphate-Polystyrene Composite for Application as Low-Temperature Proton-Conducting Electrolytes. J Electrochem Soc 162(10):F1159–F1164

    Article  CAS  Google Scholar 

  17. Miguel, Yd, Rohr T, Sherrington DC (2005) Structure, Morphology, Physical Formats and Characterization of Polymer Supports. In: Polymeric Materials in Organic Synthesis and Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–52. doi:10.1002/3527601856.ch1

  18. Zhou J, Li X, Zhu X, Sun J, Qiu Q, Huang W, Qian H (2016) Phenylbutazone, a New Long-Acting Agent that can Improve the Peptide Pharmacokinetic Based on Serum Albumin as a Drug Carrier. Chem Biol Drug Des 87(6):936–945

    Article  CAS  Google Scholar 

  19. Gao D, Diao Y, Li W, Gao N, Liu Y, Wang Z, Jiang W, Jin G (2015) Toll-Like Receptor 7 Inactive Ligands Enhanced Cytokine Induction by Conjugation to Weak Antigens. ChemMedChem 10(6):977–980

    Article  CAS  Google Scholar 

  20. Vasilyeva SV, Levina AS, Li-Zhulanov NS, Shatskaya NV, Baiborodin SI, Repkova MN, Zarytova VF, Mazurkova NA, Silnikov VN (2015) SiO 2 nanoparticles as platform for delivery of 3′-triazole analogues of AZT-triphosphate into cells. Bioorg Med Chem 23(9):2168–2175

    Article  CAS  Google Scholar 

  21. Wang Y, Sun P, Zhao J, Gao M, Yi Q, Su Y, Gao L, Zou G (2016) A light-scattering co-adsorbent for performance improvement of dye-sensitized solar cells. Electrochim Acta 194:67–73

    Article  CAS  Google Scholar 

  22. Liu F, Kong W, Qi C, Zhu L, Xiao F-S (2012) Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal 2(4):565–572

    Article  CAS  Google Scholar 

  23. Harmer MA, Farneth WE, Sun Q (1996) High surface area nafion resin/silica nanocomposites: a new class of solid acid catalyst. J Am Chem Soc 118(33):7708–7715

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the generous support of the Rensselaer Polytechnic Institute (Bae startup) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulsung Bae.

Electronic supplementary material

ESM 1

(PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, E.J., Bae, C. Superacidic porous polymer catalyst and its application in esterification of carboxylic acid. Struct Chem 28, 493–500 (2017). https://doi.org/10.1007/s11224-016-0879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0879-6

Keywords

Navigation