Skip to main content
Log in

Mutual effects of the cation-π, anion-π and intramolecular hydrogen bond in the various complexes of 1,3,5-triamino-2,4,6-trinitrobenzene with some cations (Li+, Na+, K+, Mg2+, Ca2+) and anions (F˗, Cl˗, Br˗)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive theoretical investigation of the mutual effects of the cation-π, anion-π, and intramolecular hydrogen bond (IMHB) interactions in the various ternary complexes of 1,3,5-triamino-2,4,6-trinitrobenzene (ANB) with anions (A: F˗, Cl˗, Br˗) and cations (M: Li+, Na+, K+, Mg2+, Ca2+) were carried out. The energetic, geometrical, topological, and molecular orbital descriptors are employed to estimate the strength of the mentioned non-covalent interactions and their results were compared with the corresponding data of the ANB⋯M, ANB⋯A and A⋯Bz⋯M complexes, as a set of reference points. The results indicate that the presence of resonance-assisted hydrogen bond (RAHB) units decreases the strength of cation-π interaction while for anion-π interactions, the reverse process is observed. On the other hand, the RAHB units reduce the binding energies of the ternary complexes and cooperative effects between the cation-π and anion-π interactions, with respect to the A⋯Bz⋯M complexes. Furthermore, the coexistence of cation-π and anion-π interactions modulates their effects on the strength of IMHB. Finally, the harmonic oscillator model of aromaticity (HOMA) indicator was applied to analyze the influences of the mentioned interactions on the significance of the π-electron delocalization (π-ED) of the RAHB units and aromaticity of the benzene ring. It was found that the coexistence of cation-π and anion-π interactions effectively change the π˗ED and aromaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York,

    Google Scholar 

  2. Scheiner S (1997) Hydrogen bonding. A theoretical perspective. Oxford University Press, New York,

    Google Scholar 

  3. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New York,

    Book  Google Scholar 

  4. Gilli G, Gilli P (2000) J Mol Struct 552:1–5

    Article  CAS  Google Scholar 

  5. Gilli P, Gilli G (2010) J Mol Struct 972:2–10

    Article  CAS  Google Scholar 

  6. Bertolasi V, Gilli P, Ferretti V, Gilli G (1991) J Am Chem Soc 113:4917–4925

    Article  CAS  Google Scholar 

  7. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  8. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909–915

    Article  CAS  Google Scholar 

  9. Gilli P, Bertolasi V, Pretto L, Lyčka A, Gilli G (2002) J Am Chem Soc 45:13554–13567

    Article  Google Scholar 

  10. Grabowski SJ (ed.) (2006) Hydrogen bonding: new insights. Springer, Dordrecht,

    Google Scholar 

  11. Grabowski SJ (2001) J Mol Struct (THEOCHEM) 562:137–143

    Article  CAS  Google Scholar 

  12. Palusiak M, Simon S, Sola M (2009) J Org Chem 74:2059–2066

    Article  CAS  Google Scholar 

  13. Pakiari AH, Eskandari K (2006) J Mol Struct (THEOCHEM) 759:51–60

    Article  CAS  Google Scholar 

  14. Woodford JN (2007) J Phys Chem A 111:8519–8530

    Article  CAS  Google Scholar 

  15. Hajiabadi H, Nowroozi A, Hasani M, Mohammadzadeh Jahani P, Raissi H (2012) Int J Quantum Chem 112:1384–1391

    Article  CAS  Google Scholar 

  16. Nowroozi A, Sarhadinia S, Masumian E, Nakhaei E (2014) Struct Chem 25:1359–1368

    Article  CAS  Google Scholar 

  17. Jablonski M, Kaczmarek A, Sadlej AJ (2006) J Phys Chem A 110:10890–10898

    Article  CAS  Google Scholar 

  18. Hargis JC, Evangelista FA, Ingels JB, Schaefer HF (2008) J Am Chem Soc 130:17471–1747811

    Article  CAS  Google Scholar 

  19. Nowroozi A, Raissi H (2006) J Mol Struct (THEOCHEM) 759:93–100

    Article  CAS  Google Scholar 

  20. Nowroozi A, Rezvani Rad O (2017) Theor Chem Account 136:23

    Article  Google Scholar 

  21. Rezvani Rad O, Nowroozi A (2017) Mol Phys 115:784–794

    Article  CAS  Google Scholar 

  22. Rezvani Rad O, Nowroozi A (2017) Struct Chem 1–9. doi:10.1007/s11224-017-0921-3

  23. Hobza P, Moller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, Cambridge,

    Google Scholar 

  24. Scheiner S (ed) Noncovalent forces. Springer (2015)

  25. Frontera A, Quinonero D, Deya PM (2011) Wiley Interdisciplinary Reviews Computational Molecular Science 1:440–459

    Article  CAS  Google Scholar 

  26. Ebrahimi A, Habibi M, Sayyadi O (2008) J Mol Struct: THEOCHEM 859:46–50

    Article  CAS  Google Scholar 

  27. Ebrahimi A, Habibi M, Sayyad O (2008) Mol Simul 34:689–697

    Article  CAS  Google Scholar 

  28. Escudero D, Frontera A, Quiñonero D, Deyá PM (2008) Chem Phys Lett 456:257–261

    Article  CAS  Google Scholar 

  29. Estarellas C, Frontera A, Quiñonero D, Deyá PM (2009) Chem Phys Lett 479:316–320

    Article  CAS  Google Scholar 

  30. Estarellas C, Escudero D, Frontera A, Quiñonero D, Deyá PM (2009) Theor Chem Account 122:325–332

    Article  CAS  Google Scholar 

  31. Ebrahimi A, Masoodi HR, Habibi Khorassani A, Hoseini Ghaleno M (2012) Comput Theor Chem 988:48–55

    Article  CAS  Google Scholar 

  32. Rooman M, Liévin J, Buisine E, Wintjens R (2002) J Mol Biol 319:67–76

    Article  CAS  Google Scholar 

  33. Schottel BL, Chifotides HT, Dunbar KR (2008) Chem Soc Rev 37:68–83

    Article  CAS  Google Scholar 

  34. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713–1722

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zarzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, KomaromiI GR, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03 program package. Gaussian, Inc., Pittsburgh,

    Google Scholar 

  36. Boys SF, Bernardi F (1970) Mol Phys 19:553–556

    Article  CAS  Google Scholar 

  37. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  38. Biegler KF, Schonbohm J, Bayles D (2001) AIM2000: a program to analyze andvisualize atoms in molecules J Comp Chem 22:545–559

    Article  Google Scholar 

  39. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1990) NBO, Version 3.1

  40. Nowroozi A, Hajiabadi H, Akbari F (2014) Struc Chem 25:251–258

    Article  CAS  Google Scholar 

  41. Espinosa E, Molins E (2000) J Chem Phys 113:5686–5694

    Article  CAS  Google Scholar 

  42. Dziembowska T, Szczodrowska B, Krygowski TM, Grabowski SJ (1994) J Phys Org Chem 7:142–146

    Article  CAS  Google Scholar 

  43. Wang DX, Wang MX (2013) J Am Chem Soc 135:892–897

    Article  CAS  Google Scholar 

  44. Quiñonero D, Garau C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Chem Phys Lett 359:486–492

    Article  Google Scholar 

  45. Estarellas C, Quiñonero D, Frontera A, Ballester P, Morey J, Costa A, Deyà PM (2008) J Phy Chem A 112:1622–1626

    Article  CAS  Google Scholar 

  46. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2004) J Phy Chem A 108:9423–9427

    Article  CAS  Google Scholar 

  47. Palusiak M, Simon S, Sola M (2006) J Org Chem 71:5241–5248

    Article  CAS  Google Scholar 

  48. Krygowski TM, Bankiewicz B, Czarnocki Z, Palusiak M (2015) Tetrahedron 71:4895–4908

    Article  CAS  Google Scholar 

  49. Güell M, Poater J, Luis JM, Mó O, Yáñez M, Solà M (2005) Chem Phys Chem 6:2552–2561

    Article  Google Scholar 

  50. Nowroozi A, Nakhaei E, Masumian E (2014) Struc Chem 25:1415–1422

    Article  CAS  Google Scholar 

  51. Nakhaei E, Nowroozi A (2016) Computational and Theoretical Chemistry 1096:27–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Sistan and Baluchestan (USB) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nowroozi.

Additional file

ESM 1

Fig. 1S Molecular structures of a ANB⋯A, ANB⋯M and b A⋯Bz⋯M complexes (M = Li+, Na+, K+, Mg2+ and Ca2+, A = F, Cl, and Br). Fig. 2S Some typical molecular graphs obtained from AIM analysis for a F⋯Bz⋯Ca2+, Cl⋯Bz⋯Mg2+, b F⋯Bz⋯Li+, F⋯Bz⋯Na+, F⋯Bz⋯K+ c Cl⋯Bz⋯Ca2+, d other A⋯Bz⋯M, e ANB⋯A and ANB⋯M complexes. Small red spheres represent bond critical points (BCPs). Fig. 3S Correlations of the dN…O swith the EA…ANB…M, EHB and ECOOP values. Fig. 4S The ρπ…M and ρπ…A parameters versus the EHB values. Fig. 5S The ρH…O parameter versus the EA…ANB…M and ECOOP values. Table 1S The binding energies (kcal mol−1) at M062X/6–311++G(d,p) level of theory. Table 2S The geometrical descriptors (Ǻ) of A⋯Bz⋯M complexes. Table 3S The selected topological properties of electron density (a.u. × 102) obtained by AIM analysis. Table 2S The selected results of NBO analysis at M062X/6–311++G(d,p) level of theory. Table 2S The HOMA values of A⋯Bz⋯M complexes. (DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowroozi, A., Ebrahimi, A. & Rezvani Rad, O. Mutual effects of the cation-π, anion-π and intramolecular hydrogen bond in the various complexes of 1,3,5-triamino-2,4,6-trinitrobenzene with some cations (Li+, Na+, K+, Mg2+, Ca2+) and anions (F˗, Cl˗, Br˗). Struct Chem 29, 129–137 (2018). https://doi.org/10.1007/s11224-017-1010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1010-3

Keywords

Navigation