Skip to main content
Log in

Complexes of damirone A/C, batzelline A/D, makaluvamine O and makaluvone with guanidinium and magnesium cations: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Among physiologically active compounds isolated from marine organisms, the pyrroloquinoline alkaloids (PQAs) family consisting of damirone A/C, batzelline A/D, makaluvamine O and makaluvone exhibit numerous biological activities derived from the inimitable highly-fused structures. Their structural and electronic properties were investigated through intramolecular interactions, electron affinities (EA), reduction potentials (E°) and complexation of compounds with magnesium and guanidinium cations (ionic and hydrogen bond interactions) using quantum mechanical calculations in the gas phase and solution. For both series of complexes, the most and least stable ones correspond to damirone A and batzelline D, respectively. The energy data, geometrical parameters, and the minima of electrostatic potentials (Vmin) are in good correlation with the results of population analyses. The localized molecular orbital energy decomposition analyses (LMO-EDA) demonstrate that the electrostatic interaction is the most important stabilizing component. The EA values are positive in the gas phase and solution, and are evaluated with the increase in the dielectric constant of solvent. Increase in the EA values and decrease in the E° values are observed after complexation with guanidinium and magnesium cations. Those changes are higher for electron-rich compounds compared to electron-deficient ones, containing halogen substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heffner JE, Raber JC, Moe Jr OA, Wigal CT (1998). J Chem Educ 75:365

    Article  CAS  Google Scholar 

  2. Zhang M, Vervoort L, Moalin M, Mommers A, Douny C, den Hartog GJ, Haenen GR (2018). Free Radic Biol Med 124:31–39

    Article  CAS  PubMed  Google Scholar 

  3. Y Zhu Y, Wu M, Gao N, Chu W, Zhao L, Wang Q (2019). Chem Eng J 357:75–83

    Article  CAS  Google Scholar 

  4. Bolton JL, Dunlap TL, Dietz BM (2018). Food Chem Toxicol 120:700–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reynolds CA (1990). J Am Chem Soc 112:7545–7551

    Article  CAS  Google Scholar 

  6. Ferguson-Miller S, Babcock GT (1996). Chem Rev 96:2889–2908

    Article  CAS  PubMed  Google Scholar 

  7. Fukuzumi S, Guldi D M (2001) Electron transfer in chemistry, V. Balzani (Ed.), Wiley-VCH, Weinheim 2: 270–337

  8. Lewis FD (2001) Electron transfer in chemistry, V. Balzani (Ed.), Wiley-VCH, Weinheim 3: 105–175

  9. Fukuzumi S (2003). Org Biomol Chem 1:609–620

    Article  CAS  PubMed  Google Scholar 

  10. Turek AK, Hardee DJ, Ullman AM, Nocera DG, Jacobsen EN (2016). Angew Chem Int Ed 55:539–544

    Article  CAS  Google Scholar 

  11. Yuasa J, Yamada S, Fukuzumi S (2007). Angew Chem Int Ed 46:3553–3555

    Article  CAS  Google Scholar 

  12. Macıas-Ruvalcaba NA, González I, Aguilar-Martınez M (2004). J Electrochem Soc 151:E110–E118

    Article  CAS  Google Scholar 

  13. Fukuzumi S, Kitaguchi H, Suenobu OS (2002) Activation of electron transfer reduction of p-benzoquinone derivatives by intermolecular regioselective hydrogen bond formation. Chem Commun (17):1984–1985

  14. Yuasa J, Yamada S, Fukuzumi S (2008). J Am Chem Soc 130:5808–5820

    Article  CAS  PubMed  Google Scholar 

  15. Okamoto K, Ohkubo K, Kadish KM, Fukuzumi S (2004). J Phys Chem A 108:10405–10413

    Article  CAS  Google Scholar 

  16. Greaves MD, Niemz A, Rotello VM (1999). J Am Chem Soc 121:266–267

    Article  CAS  Google Scholar 

  17. Gómez M, Gómez-Castro CZ, Padilla-Martı́nez II, Martı́nez-Martı́nez FJ, González FJ (2004). J Electroanal Chem 567:269–276

    Article  CAS  Google Scholar 

  18. Namazian M, Coote ML (2007). J Phys Chem A 111:7227–7232

    Article  CAS  PubMed  Google Scholar 

  19. Alvarez M, Bros MA, Gras G, Ajana W, Joule JA (1999). Eur J Org Chem 1999:1173–1183

    Article  Google Scholar 

  20. Backenköhler J, Reck B, Plaumann M, Spiteller P (2018). Eur J Org Chem 2018:2806–2816

    Article  CAS  Google Scholar 

  21. Chen QB, Xin XL, Yang Y, Lee SS, Aisa HA (2014). J Nat Prod 77:807–812

    Article  CAS  PubMed  Google Scholar 

  22. Radisky DC, Radisky ES, Barrows LR, Copp BR, Kramer RA, Ireland CM (1993). J Am Chem Soc 115:1632–1638

    Article  CAS  Google Scholar 

  23. Carney JR, Scheuer PJ, Kelly-Borges M (1993). Tetrahedron 49:8483–8486

    Article  CAS  Google Scholar 

  24. Lohmann JS, Wagner S, von Nussbaum M, Pulte A, Steglich W, Spiteller P (2018). Chem Eur J 24:8609–8614

    Article  CAS  PubMed  Google Scholar 

  25. El-Demerdash A, Atanasov AG, Bishayee A, Abdel-Mogib M, Hooper JN, Al-Mourabit A (2018). Nutrients 10:33

    Article  CAS  PubMed Central  Google Scholar 

  26. Miyanaga A, Janso JE, McDonald L, He M, Liu H, Barbieri L, Feng X (2011). J Am Chem Soc 133:13311–13313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jordan PA, Moore BS (2016). Cell Chem Biol 23:1504–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oshiyama T, Satoh T, Okano K, Tokuyama H (2012). Tetrahedron 68:9376–9383

    Article  CAS  Google Scholar 

  29. Backenköhler J, Spindler S, Spiteller P (2017). ChemistrySelect 2:2589–2592

    Article  CAS  Google Scholar 

  30. Blanco F, Kelly B, Sánchez-Sanz G, Trujillo C, Alkorta I, Elguero J, Rozas I (2013). J Phys Chem B 117:11608–11616

    Article  CAS  PubMed  Google Scholar 

  31. Buchdunger E, Zimmermann J, Mett H, Meyer T, Mueller M, Druker BJ, Lydon NB (1996). Cancer Res 56:100–104

    CAS  PubMed  Google Scholar 

  32. Wexselblatt E, Esko JD, Tor Y (2014). J Organomet Chem 79:6766–6774

    Article  CAS  Google Scholar 

  33. Werner J, Wernersson E, Ekholm V, Ottosson N, Öhrwall G, Heyda J, BjÖrneholm O (2014). J Phys Chem B 118:7119–7127

    Article  CAS  PubMed  Google Scholar 

  34. Yuasa J, Suenobu T, Fukuzumi S (2006). Chemphyschem 7:942–954

    Article  CAS  PubMed  Google Scholar 

  35. Orsetti S, Laskov C, Haderlein SB (2013). Environ Sci Technol 47:14161–14168

    Article  CAS  PubMed  Google Scholar 

  36. Casini A, Finazzi-Agrò A, Sabatini S, Tortorella S, Scipione L (1999). Arch Biochem Biophys 368:385–393

    Article  CAS  PubMed  Google Scholar 

  37. Park H, Oyama M (2002) Electroanalysis 14:1269–1274

  38. Witwicki M, Jezierska J (2011). J Phys Chem B 115:3172–3184

    Article  CAS  PubMed  Google Scholar 

  39. Nicolás I, Vilchis M, Aragón N, Miranda R, Hojer G, Castro M (2003). Int J Quantum Chem 93:411–421

    Article  CAS  Google Scholar 

  40. Cesaretti A, Carlotti B, Gentili PL, Clementi C, Germani R, Elisei F (2014). J Phys Chem B 118:8601–8613

    Article  CAS  PubMed  Google Scholar 

  41. Deshayes S, Xian W, Schmidt NW, Kordbacheh S, Lieng J, Wang J, Wong GC (2017). Bioconjug Chem 28:793–804

    Article  CAS  PubMed  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  43. Su P, Li H (2009). J Chem Phys 131:014102

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  45. Improta R, Barone V (2004). J Comput Chem 25:1333–1341

    Article  CAS  PubMed  Google Scholar 

  46. Moosavi-Tekyeh Z, Taherian F, Tayyari SF (2016). J Mol Struct 1111:185–192

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi FD (1970). Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  48. Su P, Jiang Z, Chen Z, Wu W (2014). J Phys Chem A 118:2531–2542

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993). J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  50. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  51. Biegler-Konig JSF, Bayles D (2001). J Comput Chem 22:545–559

    Article  Google Scholar 

  52. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  PubMed  Google Scholar 

  53. Foster JP, Weinhold F (1980). J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  54. Cai ZL, Sendt K, Reimers JR (2002). J Chem Phys 117:5543–5549

    Article  CAS  Google Scholar 

  55. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  56. Rozas I, Alkorta I, Elguero J (2000). J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  57. Zhu XQ, Wang CH (2010). J Organomet Chem 75:5037–5047

    Article  CAS  Google Scholar 

  58. Bu Y, Liu Y, Deng C (1998). J Mol Struct THEOCHEM 422:219–228

    Article  CAS  Google Scholar 

  59. Chen M, Moir D, Benoit FM, Kubwabo C (1998). J Chromatogr A 825:37–44

    Article  CAS  Google Scholar 

  60. Nepal B, Scheiner S (2016). J Organomet Chem 81:4316–4324

    Article  CAS  Google Scholar 

  61. Bím D, Rulíšek L, Srnec M (2015). J Phys Chem Lett 7:7–13

    Article  CAS  PubMed  Google Scholar 

  62. Fu Y, Liu L, Wang YM, Li JN, Yu TQ, Guo QX (2006). J Phys Chem A 110:5874–5886

    Article  CAS  PubMed  Google Scholar 

  63. Cheng GJ, Song LJ, Yang YF, Zhang X, Wiest O, Wu YD (2013). ChemPlusChem 78:943–951

    Article  CAS  Google Scholar 

  64. Baik MH, Friesner RA (2002). J Phys Chem A 106:7407–7412

    Article  CAS  Google Scholar 

  65. Jacobs N, Lang S, Panisch R, Wittstock G, Groth U, Nasiri HR (2015). RSC Adv 5:58561–58565

    Article  CAS  Google Scholar 

  66. Raymond KS, Grafton AK, Wheeler RA (1997). J Phys Chem B 101:623–631

    Article  CAS  Google Scholar 

  67. Hesabi N, Ebrahimi A, Nowroozi A (2017). J Mol Graph Model 77:86–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the University of Sistan and Baluchestan for financial support and the Computational Quantum Chemistry Laboratory for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ebrahimi.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalanchi, S.M., Ebrahimi, A. & Nowroozi, A. Complexes of damirone A/C, batzelline A/D, makaluvamine O and makaluvone with guanidinium and magnesium cations: a theoretical study. Struct Chem 30, 1635–1646 (2019). https://doi.org/10.1007/s11224-019-01325-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01325-w

Keywords

Navigation