Skip to main content
Log in

Complexes between bicyclic boron derivatives and dihydrogen: the importance of strain

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The 1:1 complexes of neutral derivatives of borabicyclo[2.2.2] and borabicyclo[3.3.3] with dihydrogen have been studied by means of MP2 computational methods. In all cases, an interaction between the boron atom and the σ bond of dihydrogen is observed. The chemical environment of the boron atom plays an important role in the observed intermolecular distance and binding energies. Very short intermolecular distances (B-H distances shorter than 1.5 Å) are obtained for several cases and binding energies up to − 97 kJ mol−1. The importance of strain has been confirmed with analogous non-cyclic systems that have been distorted to increase the non-planarity of the boron atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig 3
Fig. 4

Similar content being viewed by others

References

  1. Breeze P (2018) Chapter 8 - Hydrogen energy storage. In: Breeze P (ed) Power system energy storage technologies. Academic Press, pp 69-77.

  2. Hu X, Fan M, Towler BF, Radosz M, Bell DA, Plumb OA (2011) Chapter 8 - Hydrogen adsorption and storage. In: Bell DA, Towler BF, Fan M (eds) Coal gasification and its applications. William Andrew Publishing, Boston, pp 157–245

    Google Scholar 

  3. Sudan P, Züttel A, Mauron P, Emmenegger C, Wenger P, Schlapbach L (2003). Carbon 41:2377–2383

    CAS  Google Scholar 

  4. Han SW, Cha G-B, Park Y, Hong SC (2017). Sci Rep 7:7152

    PubMed  PubMed Central  Google Scholar 

  5. Alkorta I, Elguero J, Frontera A (2020). Crystals 10:180

    CAS  Google Scholar 

  6. Grabowski SJ, Ruipérez F (2016). PCCP 18:12810–12818

    CAS  PubMed  Google Scholar 

  7. Dryza V, Bieske EJ (2013). Int Rev Phys Chem 32:559–587

    CAS  Google Scholar 

  8. Alkorta I, Elguero J, Solimannejad M, Grabowski SJ (2011). J Phys Chem A 115:201–210

    CAS  PubMed  Google Scholar 

  9. Solimannejad M, Alkorta I (2007). Chem Phys Lett 439:284–287

    CAS  Google Scholar 

  10. Grabowski SJ (2015). PCCP 17:13539–13546

    CAS  PubMed  Google Scholar 

  11. Fakioğlu E, Yürüm Y, Nejat Veziroğlu T (2004). Int J Hydrogen Energy 29:1371–1376

    Google Scholar 

  12. Umegaki T, Yan J-M, Zhang X-B, Shioyama H, Kuriyama N, Xu Q (2009). Int J Hydrogen Energy 34:2303–2311

    CAS  Google Scholar 

  13. Williams J, Alexander MH (2000). J Chem Phys 112:5722–5730

    CAS  Google Scholar 

  14. Qiu Y, Wu C-H, Schaefer Iii HF, Allen WD, Agarwal J (2016). PCCP 18:4063–4070

    CAS  PubMed  Google Scholar 

  15. Könczöl L, Turczel G, Szpisjak T, Szieberth D (2014). Dalton Trans 43:13571–13577

    PubMed  Google Scholar 

  16. Fau S, Frenking G (1999). Mol Phys 96:519–527

    CAS  Google Scholar 

  17. Petrushenko IK, Petrushenko KB (2018). Int J Hydrogen Energy 43:801–808

    CAS  Google Scholar 

  18. Jhi S-H, Kwon Y-K (2004). Physical Review B 69:245407

    Google Scholar 

  19. Tian C, Zhao W, Wang Z, Jin M (2011). J Theor Comput Chem 10:839–847

    CAS  Google Scholar 

  20. Armaković S, Armaković SJ, Pelemiš S, Mirjanić D (2016). PCCP 18:2859–2870

    PubMed  Google Scholar 

  21. Rizzi V, Polino D, Sicilia E, Russo N, Parrinello M (2019). Angew Chem Int Ed 58:3976–3980

    CAS  Google Scholar 

  22. Oliva-Enrich JM, Alkorta I, Elguero J (2020). Molecules 25:1042

    PubMed Central  Google Scholar 

  23. Grabowski SJ (2020). Coord Chem Rev 407:213171

    CAS  Google Scholar 

  24. Alkorta I, Campillo N, Rozas I, Elguero J (1998). J Org Chem 63:7759–7763

    CAS  Google Scholar 

  25. Ohwada T, Hirao H, Ogawa A (2004). J Org Chem 69:7486–7494

    CAS  PubMed  Google Scholar 

  26. Radić N, Despotović I, Vianello R (2012). Croat Chem Acta 85:495–504

    Google Scholar 

  27. Brois SJ (1969). Trans N Y Acad Sci 31:931–950

    Google Scholar 

  28. Lehn JM, Wagner J (1968) Chem Comm:148-150

  29. Lehn JM, Munsch B, Millie P, Veillard A (1969). Theor Chim Acta 13:313–339

    CAS  Google Scholar 

  30. Mujika JI, Mercero JM, Lopez X (2005). J Am Chem Soc 127:4445–4453

    CAS  PubMed  Google Scholar 

  31. Alkorta I, Montero-Campillo MM, Elguero J, Yáñez M, Mó O (2018). Dalton Trans 47:12516–12520

    CAS  PubMed  Google Scholar 

  32. Alkorta I, Montero-Campillo MM, Elguero J, Yáñez M, Mó O (2018) Mol Phys:1-9

  33. Yamamoto Y, Takizawa M, Yu X-Q, Miyaura N (2008). Angew Chem Int Ed 47:928–931

    CAS  Google Scholar 

  34. Taylor MJ, Grigg JA, Rickard CEF (1992). Polyhedron 11:889–892

    CAS  Google Scholar 

  35. Vishnevskiy YV, Abaev MA, Rykov AN, Gurskii ME, Belyakov PA, Erdyakov SY, Bubnov YN, Mitzel NW (2012). Chem Eur J 18:10585–10594

    CAS  PubMed  Google Scholar 

  36. Greenwood NN, Morris JH, Wright JC (1964) J Chem Soc:4753-4761

  37. Alder RW, Jin Z (1996) J Chem Soc. Perkin Trans 1:657–660

    Google Scholar 

  38. Marín-Luna M, Alkorta I, Elguero J (2015). J Organomet Chem 794:206–215

    Google Scholar 

  39. Yunker LPE, Ahmadi Z, Logan JR, Wu W, Li T, Martindale A, Oliver AG, McIndoe JS (2018). Organometallics 37:4297–4308

    CAS  Google Scholar 

  40. Schmidbaur H, Wimmer T, Reber G, Müller G (1988). Angew Chem Int Ed 27:1071–1074

    Google Scholar 

  41. Taylor MJ, Grigg JA, Laban IH (1996). Polyhedron 15:3261–3270

    CAS  Google Scholar 

  42. Müller E, Bürgi H-B (1984). Helv Chim Acta 67:399–405

    Google Scholar 

  43. Franich RA, Nicholson BK, Kroese HW, Gallagher SS, Meder R, Lane JR, Kelly BD (2011). Polyhedron 30:2884–2889

    CAS  Google Scholar 

  44. Korlyukov AA, Lyssenko KA, Antipin MY, Kirin VN, Chernyshev EA, Knyazev SP (2002). Inorg Chem 41:5043–5051

    CAS  PubMed  Google Scholar 

  45. Møller C, Plesset MS (1934). Phys Rev 46:618–622

    Google Scholar 

  46. Dunning TH (1989). J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  47. Del Bene JE (1993). J Phys Chem 97:107–110

    Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16 Rev. A.03. Wallingford, CT

  49. Halkier A, Helgaker T, Jørgensen P, Klopper W, Olsen J (1999). Chem Phys Lett 302:437–446

    CAS  Google Scholar 

  50. Halkier A, Klopper W, Helgaker T (1999) Jørgensen P, Taylor PR. J Chem Phys 111:9157–9167

    CAS  Google Scholar 

  51. Kumar A, Yeole SD, Gadre SR, López R, Rico JF, Ramírez G, Ema I, Zorrilla D (2015). J Comput Chem 36:2350–2359

    CAS  PubMed  Google Scholar 

  52. Bader RFW (1990) Atoms in molecules: a quantum theory. The International Series of Monographs of Chemistry. Clarendon Press, Oxford

    Google Scholar 

  53. Popelier PLA (2000) Atoms in molecules. An introduction, Prentice Hall, Harlow, England

    Google Scholar 

  54. Keith TA (Version 17.11.14 B) AIMAll. 17.11.14 B edn. TK Gristmill Software, Overland Park KS. USA

  55. Cremer D, Kraka E (1984). Croat Chem Acta 57:1259–1281

    Google Scholar 

  56. Rozas I, Alkorta I, Elguero J (2000). J Am Chem Soc 122:11154–11161

    CAS  Google Scholar 

  57. Alkorta I, Solimannejad M, Provasi P, Elguero J (2007). J Phys Chem A 111:7154–7161

    CAS  PubMed  Google Scholar 

  58. Mata I, Alkorta I, Molins E, Espinosa E (2010). Chem Eur J 16:2442–2452

    CAS  PubMed  Google Scholar 

  59. Sánchez-Sanz G, Alkorta I, Elguero J (2011). Mol Phys 109:2543–2552

    Google Scholar 

  60. Alkorta I, Mata I, Molins E, Espinosa E (2016). Chem Eur J 22:9226–9234

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CTI (CSIC) for their continued computational support.

Funding

We are grateful to the Spanish MICINN for the financial support through project CTQ2018-094644-B-C22 and to the Comunidad de Madrid (P2018/EMT-4329 AIRTEC-CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Alkorta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkorta, I., Elguero, J. & Oliva-Enrich, J.M. Complexes between bicyclic boron derivatives and dihydrogen: the importance of strain. Struct Chem 31, 1273–1279 (2020). https://doi.org/10.1007/s11224-020-01556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01556-2

Keywords

Navigation