Skip to main content
Log in

A detail investigation of synergistic effects between the intramolecular hydrogen bond and π-electron delocalization in 3-hydroxy prop-2-en thial and its derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present work, a detailed investigation of synergistic effects between the intramolecular hydrogen bond (IMHB) and π-electron delocalization (π-ED) of 3-hydroxy prop-2-en thial (HPT) and its halogenated derivatives was performed. For this purpose, at first, the π-ED in the enol form of the benchmark systems by various aromaticity indices such as λ, λ́, HOMA, NICS, PDI, ATI, and FLUπ were evaluated. On the other hand, the strength of IMHB by various descriptors such as energetical, geometrical, spectral, topological, and molecular orbital parameters was also estimated. For better understanding the nature of the synergistic phenomenon, we examined and compared the linear relationships between the π-ED indices with the HB descriptors. Our results show that the geometrical indicators have the best linear relationships with all of the mentioned HB parameters. Also, according to their absolute linear correlation coefficients, the following order is concluded:

λ > λ > HOMA > FLUπ > ATI > NICS (1) > PDI > NICS (0)Finally, the synergistic effect between the π-ED and IMHB from the position and nature point of views is discussed. These results clearly show that the synergistic effect of R1 derivatives is negative, while the corresponding effects of R2 and R3 ones are positive. Moreover, the synergetic effects also depend on the nature of substitutions especially their electronegativity values (F > Br > Cl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeffrey GA, Saenger W (2012) Hydrogen bonding in biological structures. Springer Science & Business Media.

  2. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  3. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford, MS

    Google Scholar 

  4. Grabowski SJ (2006) Hydrogen bonding – new insights. Springer, Berlin

    Google Scholar 

  5. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New York

    Google Scholar 

  6. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and Pi-electron delocalization. Chem Rev 105(10):3513–3560

    CAS  PubMed  Google Scholar 

  7. Grabowski SJ (2006) Theoretical studies of strong hydrogen bonds. Annual Reports Section“ C”(Physical Chemistry) 102:131-165.

  8. Maharramov AM, Mahmudov KT, Kopylovich MN, Silva MFCGDA, Pombeiro AJL (2016) Non-covalent interactions in the synthesis and design of new compounds. Wiley Online Library.

    Google Scholar 

  9. Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23(4):120–126

    CAS  Google Scholar 

  10. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76

    CAS  Google Scholar 

  11. Desiraju GR (2007) Kristall-Engineering: eine holistische Darstellung. Angew Chem 119:8492–8508

    Google Scholar 

  12. Scheiner S (1997) Hydrogen bonding. a theoretical perspective. Oxford University Press, New York.

  13. Gilli P, Gilli G (2010) Hydrogen bond models and theories: the dual hydrogen bond model and its consequences. J Mol Struct 972(1-3):2–10

    CAS  Google Scholar 

  14. Mahmudov KT, Pombeiro AJ (2016) Resonance-assisted hydrogen bonding as a driving force in synthesis and a synthon in the design of materials. Chem Eur J 22(46):16356–16398

    CAS  PubMed  Google Scholar 

  15. Gilli P, Bertolasi V, Pretto L, Lyčka A, Gilli G (2002) The nature of solid-state N− H⊙⊙⊙ O/O− H⊙⊙⊙ N tautomeric competition in resonant systems. Intramolecular proton transfer in low-barrier hydrogen bonds formed by the⊙⊙⊙ OC− CN− NH⊙⊙⊙⇄⊙⊙⊙ HO− CC− NN⊙⊙⊙ Ketohydrazone− Azoenol System. A variable-temperature x-ray crystallographic and DFT computational study. J Am Chem Soc 124(45):13554–13567

    CAS  PubMed  Google Scholar 

  16. Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in β-diketone enol RAHB systems. J Am Chem Soc 126(12):3845–3855

    CAS  PubMed  Google Scholar 

  17. Gilli P, Bertolasi V, Ferretti V, Gilli G (2000) Evidence for intramolecular N− H⊙⊙⊙ O resonance-assisted hydrogen bonding in β-enaminones and related heterodienes. A combined crystal-structural, IR and NMR spectroscopic, and quantum-mechanical investigation. J Am Chem Soc 122(42):10405–10417

    CAS  Google Scholar 

  18. Cleland W, Kreevoy MM (1994) Low-barrier hydrogen bonds and enzymic catalysis. Science 264(5167):1887–1890

    CAS  PubMed  Google Scholar 

  19. Cleland WW, Frey PA, Gerlt JA (1998) The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem 273(40):25529–25532

    CAS  PubMed  Google Scholar 

  20. Nowroozi A, Roohi H, Hajiabadi H, Raissi H, Khalilinia E, Najafi Birgan M (2011) OH⋯ S intramolecular hydrogen bond in thiomalonaldehyde derivatives; a quantum chemical study. Comput Theor Chem 963(2-3):517–524

    CAS  Google Scholar 

  21. Raissi H, Nowroozi A, Mohammdi R, Hakimic M (2006) Intramolecular hydrogen bond, molecular structure and vibrational assignment of tetra-acetylethane: a density functional study. Spectrochim Acta A Mol Biomol Spectrosc 65(3-4):605–615

    PubMed  Google Scholar 

  22. Raissi H, Nowroozi A, Roozbeh M, Farzada F (2006) Molecular structure and vibrational assignment of (trifluoroacetyl) acetone: a density functional study. J Mol Struct 787(1-3):148–162

    CAS  Google Scholar 

  23. Nowroozi A, Mohammadzadeh Jahani P, Asli N, Hajiabadi H, Dahmardeh S, Raissi H (2012) Evaluation of the origin of conformational and tautomeric preferences in N-formylformamide–a quantum chemical study. Int J Quantum Chem 112(2):489–497

    CAS  Google Scholar 

  24. Nowroozi A, Raissi H, Hajiabadi H, Mohammadzadeh Jahani P (2011) Reinvestigation of intramolecular hydrogen bond in malonaldehyde derivatives: an ab initio, AIM and NBO study. Int J Quantum Chem 111(12):3040–3047

    CAS  Google Scholar 

  25. Hargis JC, Evangelista FA, Ingels JB, Schaefer HF (2008) Schaefer Short intramolecular hydrogen bonds: derivatives of malonaldehyde with symmetrical substituents. J Am Chem Soc 130(51):17471–17478

    CAS  PubMed  Google Scholar 

  26. Sanz P, Mó O, Yáñez M, Elguero J (2007) Non-resonance-assisted hydrogen bonding in hydroxymethylene and aminomethylene cyclobutanones and cyclobutenones and their nitrogen counterparts. ChemPhysChem 8(13):1950–1958

    CAS  PubMed  Google Scholar 

  27. Sanz P, Mó O, Yáñez M, Elguero J (2008) Bonding in tropolone, 2-aminotropone, and aminotroponimine: no evidence of resonance-assisted hydrogen-bond effects. Chem Eur J 2008; 14(14):4225-4232.

  28. Alkorta I, Elguero J, Mó O, Yáñez M, Del Bene JE (2004) Do coupling constants and chemical shifts provide evidence for the existence of resonance-assisted hydrogen bonds? Mol Phys 102(23-24):2563–2574

    CAS  Google Scholar 

  29. Góra RE, Maj M, Grabowski SJ (2013) Resonance-assisted hydrogen bonds revisited. Resonance stabilization vs. charge delocalization. Phys Chem Chem Phys 15(7):2514–2522

    PubMed  Google Scholar 

  30. Rozas I, Alkorta I, Elguero J (2001) Intramolecular hydrogen bonds in o rtho-substituted hydroxybenzenes and in 8-susbtituted 1-hydroxynaphthalenes: can a methyl group be an acceptor of hydrogen bonds? J Phys Chem A 105(45):10462–10467

    CAS  Google Scholar 

  31. Nowroozi A, Roohi H, Sadeghi MS, Sheibaninia M (2011) The competition between the intramolecular hydrogen bond and π-electron delocalization in trifluoroacetylacetone—a theoretical study. Int J Quantum Chem 111(3):578–585

    CAS  Google Scholar 

  32. Nadim ES, Raissi H, Yoosefian M, Farzad F, Nowroozi A (2010) Ab initio and DFT computational studies on molecular conformations and intramolecular hydrogen bonding in 3-mercapto-but-2-enethial. J Sulfur Chem 31(4):275–285

    CAS  Google Scholar 

  33. Chen C, Shyu SF (2000) Conformers and intramolecular hydrogen bonding of the oxalic acid monomer and its anions. Int J Quantum Chem 76(4):541–551

    CAS  Google Scholar 

  34. Haddon R (1980) Symmetrical hydrogen bonding: molecular orbital theory of the. Pi-electron component. J Am Chem Soc 102(6):1807–1811

    CAS  Google Scholar 

  35. Higgins J, Zhou X, Liu R, Huang TTS (1997) Theoretical study of thermal decomposition mechanism of oxalic acid. J Phys Chem A 101(14):2702–2708

    CAS  Google Scholar 

  36. Giricheva NI, Girichev GV, Lapshina SB, Kuzmina NI (2000) Molecular structure of dipivaloylmethane and the intramolecular hydrogen bond problem. J Struct Chem 41(1):48–54

    CAS  Google Scholar 

  37. Bernardi F, Csizmadia IG, Mangini A (1985) Organic sulfur chemistry. Elsevier Science Pub, Co

    Google Scholar 

  38. Block E (2013) Reactions of organosulfur compounds: organic chemistry: a series of monographs. Academic press

  39. Patai S, Rappoport Z (1986) The chemistry of organic selenium and tellurium compounds. John Wiley & Sons

  40. McReynolds MD, Dougherty JM, Hanson PR (2004) Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. Chem Rev 104(5):2239–2258

    CAS  PubMed  Google Scholar 

  41. Duus F (1979) Enol-enethiol tautomerism of β-thioxoketones. Phosphorus Sulfur Rel Elem 6(1-2):83–83

    Google Scholar 

  42. Berg U, Sandström J, Carlsen L, Duus F (1983) β-Thioxoketones. Part 9. A dynamic 1H nuclear magnetic resonance spectroscopic study of thioacetylacetone and related β-thioxoketones. Direct observation of the enol and enethiol tautomeric constituents and their interconversion. J Chem Soc Perkin Trans 2(9):1321–1325

    Google Scholar 

  43. Carlsen L, Duus F (1980) β-Thioxoketones. Part 6. Electronic absorption spectra of aromatic β-thioxoketones. A study of enol–enethiol tautomerism. J Chem Soc Perkin Trans 2(12):1768–1773

    Google Scholar 

  44. Nørskov-Lauritsen L, Carlsen L, Duus F (1983) Definitive evidence for the existence of the hydrogen-bonding enol form of non-aromatic β-thioxoketones. X-Ray crystal structure of 1-(1-methylcyclopropyl)-3-thioxobutan-1-one. J Chem Soc Chem Commun 9:496–498

    Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 revision C 02 (or D 01). Gaussian Inc, Pittsburgh

    Google Scholar 

  46. Biegler KF, Schonbohm J, Bayles D (2001) AIM2000: a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559

    Google Scholar 

  47. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1992) NBO, Version 3.1 University of Wisconsin, Madison.

  48. Hameka HF (1958) On the nuclear magnetic shielding in the hydrogen molecule. J Mol Phys 1:203–215

    CAS  Google Scholar 

  49. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlation on the enol form of the bdiketone fragment. J Am Chem Soc 111:1023–1028

    CAS  Google Scholar 

  50. Nakhaei E, Nowroozi A (2016) On the performance of resonance assisted hydrogen bond theory in malonaldehyde derivatives. Comput Theor Chem 1096:27–32

    CAS  Google Scholar 

  51. Krygowski TM, Cyranski MK (1996) Separation of the energetic and geometric contributions to the aromaticity of p-electron carbocyclics. Tetrahedron 52:1713–1722

    CAS  Google Scholar 

  52. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJR (1996) Nucleusindependent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    CAS  PubMed  Google Scholar 

  53. Poater J, Feradera X, Duran M, Sola M (2003) The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem Eur J 9:400–406

    CAS  PubMed  Google Scholar 

  54. Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718

    CAS  Google Scholar 

  55. Matito E, Salvador P, Sola M (2006) Aromaticity measures from fuzzy-atom bond orders (FBO). The aromatic fluctuation and the para-delocalization (PDI) indexes. J Phys Chem A 110:5108–5113

    CAS  PubMed  Google Scholar 

  56. Matsushita† O, Derkacheva VM, Muranaka A, Shimizu S, Uchiyama M, Luk’yanets EA, Kobayashi N (2012) Rectangular-shaped expanded phthalocyanines with two central metal atoms. J Am Chem Soc 134(7):3411-3418.

  57. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the. Beta -diketone fragment. J Am Chem Soc 111(3):1023–1028

    CAS  Google Scholar 

  58. Nowroozi A, Raissi H, Farzad F (2005) The presentation of an approach for estimating the intramolecular hydrogen bond strength in conformational study of β-Aminoacrolein. J Mol Struct THEOCHEM 730(1-3):161–169

    CAS  Google Scholar 

  59. Buemi G, Zuccarello F (2004) DFT study of the intramolecular hydrogen bonds in the amino and nitro-derivatives of malonaldehyde. Chem Phys 306(1-3):115–129

    CAS  Google Scholar 

  60. Jabłoński M, Kaczmarek A, Sadlej AJ (2006) Estimates of the energy of intramolecular hydrogen bonds. J Phys Chem A 110(37):10890–10898

    PubMed  Google Scholar 

  61. Schuster P, Zundel G (1976) The hydrogen bond structure and spectroscopy. North-Holland, Amsterdam

    Google Scholar 

  62. Nowroozi A, Hajiabadi H, Akbari F (2014) H···O and OH···S intramolecular interactions in simple resonance-assisted hydrogen bond systems: a comparative study of various models Struct. Chem 25:251–258

    CAS  Google Scholar 

  63. Jesus AL, Redinha J (2011) Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives. J Phys Chem A 115(48):14069–14077

    CAS  Google Scholar 

  64. Nowroozi A, Raissi H, Hajiabai H, Mohammadzadeh P (2011) Reinvestigation of intramolecular hydrogen bond in malonaldehyde derivatives: an ab initio, AIM and NBO study. Int J Quantum Chem 111:3040

    CAS  Google Scholar 

  65. Nowroozi A, Roohi H, Hajiabadi H, Raissi H, Khalilinia E, Najafi M (2011) A comparative study of two-ring resonance-assisted hydrogen bond systems. Comput Theor Chem 963:517

    CAS  Google Scholar 

  66. Richard F, Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nowroozi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowroozi, A., Housaindokht, M.R. & Nakhaei, E. A detail investigation of synergistic effects between the intramolecular hydrogen bond and π-electron delocalization in 3-hydroxy prop-2-en thial and its derivatives. Struct Chem 32, 709–718 (2021). https://doi.org/10.1007/s11224-020-01649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01649-y

Keywords

Navigation