Skip to main content
Log in

A 13C chemical shifts study of iodopyrazoles: experimental results and relativistic and non-relativistic calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work reports the 13C chemical shifts of 49 iodopyrazoles and the 15N chemical shifts of 6 iodopyrazoles, most of them from the literature but a number of significant cases from the present work. Most experimental data were from solution studies but some of them correspond to the solid state (CPMAS). The calculations include non-relativistic calculations (nr-GIAO) and relativistic ones (ZORA, mDKS/B3LYP/VDZ and mDKS/B3LYP/VTZ). In the case of NH-pyrazoles, problems of tautomerism and desmotropy arise that have been also studied. The manuscript is dedicated to develop some equations containing corrections for heavy atoms to predict 13C and 15N chemical shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data that support this research are available in the article and supporting information material

Code availability

Not applicable

References

  1. Pyykkö P, Görling A, Rösch N (1987). Mol Phys 61:195–205

    Article  Google Scholar 

  2. Vaara J (2007). Phys Chem Chem Phys 9:5399–5418

    Article  CAS  PubMed  Google Scholar 

  3. Viesser RV, Ducati LC, Autschbach J, Tormena CF (2015). Phys Chem Chem Phys 17:19315–19324

    Article  CAS  PubMed  Google Scholar 

  4. Vícha J, Novotny J, Komorovsky S, Straka M, Kaupp M, Marek R (2020). Chem Rev 120:7065–7103

    Article  Google Scholar 

  5. Repisky M, Komorovsky S, Kadek M, Konecny L, Ekström U, Malkin E, Kaupp M, Ruud K, Malkina OL, Malkin VG (2020). J Chem Phys 152:184101

    Article  CAS  PubMed  Google Scholar 

  6. Lu J, Scheiner S (2020). J Phys Chem A 124:7716–7725

    Article  CAS  PubMed  Google Scholar 

  7. Krivdin LB (2019). Magn Reson Chem 57:897–914

    Article  CAS  PubMed  Google Scholar 

  8. Krivdin LB (2020). Magn Reson Chem 58:478–499

    Article  CAS  PubMed  Google Scholar 

  9. Krivdin LB (2020). Magn Reson Chem 58:500–511

    Article  CAS  PubMed  Google Scholar 

  10. Alkorta I, Elguero J (2020). Phosphorus Sulfur Silicon Relat Elem 195:307–313

    Article  CAS  Google Scholar 

  11. Cabildo P, Claramunt RM, Elguero J (1984). Org Magn Reson 22:603–607

    Article  CAS  Google Scholar 

  12. Begtrup M, Vedsø P, Cabildo P, Claramunt RM, Elguero J, Meutermans W (1992). Magn Reson Chem 30:455–459

    Article  CAS  Google Scholar 

  13. Begtrup M, Boyer G, Cabildo P, Cativiela C, Claramunt RM, Elguero J, García JI, Toiron C, Vedsø P (1993). Magn Reson Chem 31:107–168

    Article  CAS  Google Scholar 

  14. Claramunt RM, Sanz D, López C, Jiménez JA, Jimeno ML, Elguero J, Fruchier A (1997). Magn Reson Chem 35:35–75

    Article  CAS  Google Scholar 

  15. Provasi P, Jimeno ML, Alkorta I, Reviriego F, Elguero J, Jokissari J (2016). Magn Reson Chem 54:637–640

    Article  CAS  PubMed  Google Scholar 

  16. Alkorta I, Elguero J (1998). New J Chem 22:381–385

    Article  CAS  Google Scholar 

  17. Alkorta I, Elguero J (1998). Struct Chem 9:187–202

    Article  CAS  Google Scholar 

  18. Holzer H, Castoldi L, Kyselova V, Sanz D, Claramunt RM, Torralba MC, Alkorta I, Elguero J (2019). Struct Chem 30:1729–1735

    Article  CAS  Google Scholar 

  19. Claramunt RM, López C, García MA, Otero MD, Torres MR, Pinilla E, Alarcón SH, Alkorta I, Elguero J (2001). New J Chem 25:1061–1068

    Article  CAS  Google Scholar 

  20. Claramunt RM, Santa María MD, Sanz D, Alkorta I, Elguero J (2006). Magn Reson Chem 44:566–570

    Article  CAS  PubMed  Google Scholar 

  21. Alkorta I, Alvarado M, Elguero J, García-Granda S, Goya P, Torre-Fernández L, Menéndez-Taboada L (2009). J Mol Struct 920:82–89

    Article  CAS  Google Scholar 

  22. Alkorta I, Elguero J (2010). Struct Chem 21:755–759

    Article  CAS  Google Scholar 

  23. d’Antuono P, Botek E, Champagne B, Spassova M, Denkova P (2006). J Chem Phys 125:144309

    Article  PubMed  Google Scholar 

  24. d'Antuono P, Botek E, Champagne B, Wieme J, Reyniers MF, Marin GB, Adriaensens PJ, Gelan JM (2007). Chem Phys Lett 436:388–393

    Article  CAS  Google Scholar 

  25. Li S, Zhou W, Gao H, Zhou Z (2012). Magn Reson Chem 50:106–113

    Article  CAS  PubMed  Google Scholar 

  26. Marín-Luna M, Claramunt RM, López C, Pérez-Torralba M, Sanz D, Reviriego F, Alkorta I, Elguero J (2020). Solid State NMR 108:101676

    Article  Google Scholar 

  27. Radula-Janik K, Kupka T, Ejsmont K, Daszkiewicz Z, Sauer SPA (2013). Magn Reson Chem 51:630–635

    Article  CAS  PubMed  Google Scholar 

  28. Radula-Janik K, Kupka T, Ejsmont K, Daszkiewicz Z, Sauer SPA (2015). Struct Chem 26:997–1006

    Article  CAS  Google Scholar 

  29. Krivdin LB (2017). Prog NMR Spectrosc 102-103:98–119

    Article  CAS  Google Scholar 

  30. Bednarek E Dobrowolski JCz, Dobrosz-Teperek K, Lozerski L, Lewandowski W, Mazurek AP (2000). J Mol Struct 554:233–243

    Article  CAS  Google Scholar 

  31. Viesser RV, Ducati LC, Tormena CF, Autschbach J (2018). Phys Chem Chem Phys 20:11247–11259

    Article  Google Scholar 

  32. Mazeikaite R, Sudzius J, Urbelis G, Labanauskas L (2014). Arkivoc vi:54–71

    Article  Google Scholar 

  33. Hüttel R, Schäfer O, Jochum P (1955). Justus Liebigs Ann Chem 593:200–207

    Article  Google Scholar 

  34. Stefani HA, Pereira CMP, Almeida RB, Braga RC, Guzen KP, Cella R (2005). Tetrahedron Lett 46:6833–6837

    Article  CAS  Google Scholar 

  35. Fu L, Bao X, Li S, Wang L, Liu Z, Chen W, Xia Q, Liang G (2017). Tetrahedron 73:2504–2511

    Article  CAS  Google Scholar 

  36. Salanouve E, Guillou S, Bizouarne M, Bonhomme FJ, Janin YL (2012). Tetrahedron 68:3165–3171

    Article  CAS  Google Scholar 

  37. Rodríguez-Franco MI, Dorronsoro I, Hernández-Higueras AI, Antequera G (2001). Tetrahedron Lett 42:863–865

    Article  Google Scholar 

  38. Gorjizadeh M, Afshari M, Naseh M (2016). Russ J Gen Chem 86:1931–1934

    Article  CAS  Google Scholar 

  39. Miethchen R, Randow R, Listemann R, Hildebrandt J, Kohlheim K (1989). J Prakt Chem (Leipzig) 331:799–805

    Article  CAS  Google Scholar 

  40. Fung BM, Khitrin AK, Ermolaev K (2000). J Magn Reson 142:97–101

    Article  CAS  PubMed  Google Scholar 

  41. Becke AD (1988). Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  42. Becke AD (1993). J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  45. Frisch MJ, Pople JA, Binkley JS (1984). J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  46. Weigend F, Ahlrichs R (2005). Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  47. Gaussian 16, Revision A.03, Frisch MJ, Trucks, GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Wallingford: Gaussian Inc

  48. Alkorta I, Elguero J (2003). Struct Chem 14:377–389

    Article  CAS  Google Scholar 

  49. Blanco F, Alkorta I, Elguero J (2007). Magn Reson Chem 45:797–800

    Article  CAS  PubMed  Google Scholar 

  50. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra CS, van Gisbergen JA, Snijders JAG, Ziegler T (2001). J Comput Chem 22:931–967

    Article  Google Scholar 

  51. van Lenthe E, Baerends EJ (2003). J Comput Chem 24:1142–1156

    Article  PubMed  Google Scholar 

  52. Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  53. Perdew J (1986). Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  54. van Lenthe E, Baerends EJ, Snijders JG (1993). J Chem Phys 99:4597–4610

    Article  Google Scholar 

  55. Autschbach J, Zheng S (2009). Ann Reps NMR Spectrosc 67:1–95

    Article  CAS  Google Scholar 

  56. Autschbach J (2014). J Phil Trans R Soc A 372:20120489

    Article  Google Scholar 

  57. Jensen F (2015). J Chem Theor Comput 11:132–138

    Article  CAS  Google Scholar 

  58. Dyall KG (2006). Theor Chem Accounts 115:441–447

    Article  CAS  Google Scholar 

  59. Cativiela C, Elguero J, Mathieu D, Phan Tan Luu R  (1983). Eur J Med Chem 18:359–363

    CAS  Google Scholar 

  60. Elguero J, Mathieu D, Phan Tan Luu R (1987). Quant Struct Act Relat 6:173–178

    Google Scholar 

  61. Martín O, Pérez-Torralba M, García MA, Claramunt RM, Torralba MC, Torres MR, Alkorta I, Elguero J (2016). ChemistrySelect 4:861–870

    Article  Google Scholar 

  62. Marín-Luna M, Sánchez-Andrada P, Alkorta I, Elguero J, Torralba MC, Delgado P, Santa María D, Claramunt RM (2021) Magn Reson Chem, In press. https://doi.org/10.1002/mrc.5107

  63. Free SM, Wilson JW (1964). J Med Chem 7:395–399

    Article  CAS  PubMed  Google Scholar 

  64. Kubinyi H (1988). Quant Struct Act Relat 7:121–133

    Article  CAS  Google Scholar 

  65. Hansch C, Leo A (1995) Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, American Chemical Society (see: http://www.chem.swin.edu.au/modules/mod4/qsarwebp6.html

  66. Chen H, Carlsson L, Eriksson M, Varkonyi P, Norinder U, Nilsson I (2013). J Chem Inf Model 53:1324–1336

    Article  CAS  PubMed  Google Scholar 

  67. Box GE, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley, New York

    Google Scholar 

  68. Lewis GA, Mathieu D, Phan-Tan-Luu R  (1999), Pharmaceutical experimental design: Marcel Dekker, New York

  69. Carlson R, Carlson JE (2005) Design and optimization in organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  70. Minkin VI, Garnovskii AD, Elguero J, Katritzky AR, Denisko OV (2000). Adv Heterocycl Chem 76:157–323

    Article  CAS  Google Scholar 

  71. Foces-Foces C, Llamas-Saiz AL, Claramunt RM, López C, Elguero J (1994). J Chem Soc Chem Commun:1143–1145

  72. García MA, López C, Claramunt RM, Kenz A, Pierrot M, Elguero J (2002). Helv Chim Acta 85:2763–2776

    Article  Google Scholar 

  73. Holzer W, Claramunt RM, López C, Alkorta I, Elguero J (2008). Solid State NMR 34:68–76

    Article  CAS  Google Scholar 

  74. Elguero J (2011). Cryst Growth Des 11:4731–4738

    Article  CAS  Google Scholar 

  75. Vilkauskaite G, Eller GA, Sackus A, Holzer W (2009). Molbank:M620

  76. Arbaciauskiene E, Krikstolaityte S, Mitruleviciene A, Bieliauskas A, Martynaitis V, Bechmann M, Roller A, Sackus A, Holzer W (2018). Molecules 23:129

    Article  PubMed Central  Google Scholar 

  77. Cativiela C, Gálvez JA, García JI, Aguilar-Parrilla F, Elguero J (1995). Heterocycl Commun 1:157–166

  78. Alarcón SH, Jiménez JA, Claramunt RM, Limbach HH, Elguero J (2000). Magn Reson Chem 38:305–310

    Article  Google Scholar 

  79. Ballano G, Jiménez AI, Cativiela C, Claramunt RM, Sanz D, Alkorta I, Elguero J (2008). J Organomet Chem 73:8575–8578

    Article  CAS  Google Scholar 

  80. Coles MP, Khalaf MS, Claramunt RM, García MA, Alkorta I, Elguero J (2010). J Phys Org Chem 23:526–535

    Article  CAS  Google Scholar 

  81. Aguilar-Parrilla F, Männle F, Limbach HH, Elguero J, Jagerovic N (1994). Magn Reson Chem 32:699–702

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from the Ministerio de Ciencia, Innovación y Universidades (Project PGC2018-094644-B-C2) and Dirección General de Investigación e Innovación de la Comunidad de Madrid (PS2018/EMT-4329 AIRTEC-CM). Thanks are also given to the CTI (CSIC) for their continued computational support.

Funding

Ministerio de Ciencia, Innovación y Universidades (Project PGC2018-094644-B-C2) and Dirección General de Investigación e Innovación de la Comunidad de Madrid (PS2018/EMT-4329 AIRTEC-CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Alkorta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkorta, I., Claramunt, R.M., Sanz, D. et al. A 13C chemical shifts study of iodopyrazoles: experimental results and relativistic and non-relativistic calculations. Struct Chem 32, 925–937 (2021). https://doi.org/10.1007/s11224-021-01755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01755-5

Keywords

Navigation