Skip to main content
Log in

Normal Proofs, Cut Free Derivations and Structural Rules

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Different natural deduction proof systems for intuitionistic and classical logic —and related logical systems—differ in fundamental properties while sharing significant family resemblances. These differences become quite stark when it comes to the structural rules of contraction and weakening. In this paper, I show how Gentzen and Jaśkowski’s natural deduction systems differ in fine structure. I also motivate directed proof nets as another natural deduction system which shares some of the design features of Genzen and Jaśkowski’s systems, but which differs again in its treatment of the structural rules, and has a range of virtues absent from traditional natural deduction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. R., and N. D. Belnap. Entailment: The Logic of Relevance and Necessity, volume 1. Princeton University Press, Princeton, 1975.

  2. Anderson, A. R., N. D. Belnap, and J. M. Dunn. Entailment: The Logic of Relevance and Necessity, volume 2. Princeton University Press, Princeton, 1992.

  3. Belnap N. D.: Display Logic. Journal of Philosophical Logic 11, 375–417 (1982)

    Google Scholar 

  4. Curry, H. B., Foundations of Mathematical Logic. Dover, 1977. Originally published in 1963.

  5. Došen, K., The first axiomatization of relevant logic. Journal of Philosophical Logic 21(4):339–356, November 1992.

  6. Dunn J. M., and G. Restall. Relevance Logic. In D. M. Gabbay, (ed.), Handbook of Philosophical Logic, volume 6. Kluwer Academic Publishers, Second edition, 2002, pp. 1–136.

  7. Fitch, F. B., Symbolic Logic. Roland Press, New York, 1952.

  8. Gentzen, G., Untersuchungen über das logische Schliessen. Math. Zeitschrift 39, 1934.

  9. Gentzen G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112, 493–565 (1936)

    Article  Google Scholar 

  10. Girard J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–101 (1987)

    Article  Google Scholar 

  11. Girard, J.-Y., Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

  12. Jaśkowski, S., On the Rules of Suppositions in Formal Logic. Studia Logica 1, 1934. Reprinted in Polish Logic[17, pp. 232–256].

  13. Kneale, W., and M. Kneale. The Development of Logic. Oxford University Press, 1962.

  14. Kneale, W.C.. The Province of Logic. In H. D. Lewis, (ed.), Contemporary British Philosophy: Third Series, pages 237–261. George Allen and Unwin, 1956.

  15. Lemmon, E. J., Beginning Logic. Nelson, 1965.

  16. Mares, E. D. Relevant Logic: A Philosophical Interpretation. Cambridge University Press, 2004.

  17. McCall, S., (ed.). Polish Logic 1920–1939. Oxford University Press, 1967.

  18. Meyer R. K., R Routley., Dunn J. M.: Curry’s Paradox. Analysis 39, 124–128 (1979)

    Article  Google Scholar 

  19. Negri, S., and J. von Plato. Structural Proof Theory. Cambridge University Press, Cambridge, 2001.

  20. O’Hearn P., Pym D.: The Logic of Bunched Implications. Bulletin of Symbolic Logic 5, 215–244 (1999)

    Article  Google Scholar 

  21. Pelletier, F. J., A Brief History of Natural Deduction. History and Philosophy of Logic 20(1):1–31, March 1999.

  22. von Plato, J., Natural deduction with general elimination rules. Archive for Mathematical Logic, 40(541–567), 2001.

  23. Prawitz, D., Natural Deduction: A Proof Theoretical Study. Almqvist and Wiksell, Stockholm, 1965.

  24. Prior A. N.: Curry’s Paradox and 3-Valued Logic. The Australasian Journal of Philosophy 33, 177–182 (1955)

    Article  Google Scholar 

  25. Restall, G., An Introduction to Substructural Logics. Routledge, 2000.

  26. Restall, G., Multiple Conclusions. In P. Hájek, L. Valdés-Villanueva, and D. Westerståhl, (eds.), Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International Congress, pp. 189–205. KCL Publications, 2005. http://consequently.org/writing/multipleconclusion.

  27. Restall, G., Proofnets for s5: sequents and circuits for modal logic. In C. Dimitracopoulos, L. Newelski, and D. Normann, (eds.), Logic Colloquium 2005, number 28 in Lecture Notes in Logic. Cambridge University Press, 2007. http://consequently.org/writing/s5nets.

  28. Robinson E.: Proof Nets for Classical Logic. Journal of Logic and Computation 13(5), 777–797 (2003)

    Article  Google Scholar 

  29. Shoesmith, D. J., and T. J. Smiley. Multiple Conclusion Logic. Cambridge University Press, Cambridge, 1978.

  30. Slaney, J. K., Vagueness Revisited. Technical Report tr–arp–15/88, Automated Reasoning Project, Australian National University, 1988.

  31. Slaney J. K.: A General Logic. Australasian Journal of Philosophy 68, 74–88 (1990)

    Article  Google Scholar 

  32. Suppes, P., Introduction to Logic. van Nostrand, Princeton, 1957.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Restall.

Additional information

Special Issue: Gentzen’s and Jaśkowski’s Heritage 80 Years of Natural Deduction and Sequent Calculi

Edited by Andrzej Indrzejczak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restall, G. Normal Proofs, Cut Free Derivations and Structural Rules. Stud Logica 102, 1143–1166 (2014). https://doi.org/10.1007/s11225-014-9598-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-014-9598-4

Keywords

Navigation