Skip to main content
Log in

Clocks and fisher information

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In a broad sense, any parametric family of quantum states can be viewed as a quantum clock. The time, which is the parameter, is encoded in the corresponding quantum states. The quality of such a clock depends on how precisely we can distinguish the states or, equivalently, estimate the parameter. In view of the quantum Cramér—Rao inequalities, the quality of quantum clocks can be characterized by the quantum Fisher information. We address the issue of quantum clock synchronization in terms of quantum Fisher information and demonstrate its fundamental difference from the classical paradigm. The key point is the superadditivity of Fisher information, which always holds in the classical case but can be violated in quantum mechanics. The violation can occur for both pure and mixed states. Nevertheless, we establish the superadditivity of quantum Fisher information for any classical-quantum state. We also demonstrate an alternative form of superadditivity and propose a weak form of superadditivity. The violation of superadditivity can be exploited to enhance quantum clock synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

References

  1. D. Janzing and T. Beth, IEEE Trans. Inform. Theory, 49, 230–240 (2003); arXiv:quant-ph/0112138v2 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. A. Fisher, Proc. Cambridge Philos. Soc, 22, 700–725 (1925).

    Article  MATH  Google Scholar 

  3. C. R. Rao, Bull. Calcutta Math. Soc, 37, 81–91 (1945).

    MATH  MathSciNet  Google Scholar 

  4. H. Cramér, Mathematical Methods of Statistics (Princeton Math. Ser., Vol. 9), Princeton Univ. Press, Princeton, N. J. (1946).

    Google Scholar 

  5. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York (1991).

    Book  MATH  Google Scholar 

  6. P. J. Huber, Robust Statistics, Wiley, New York (1981).

    Book  MATH  Google Scholar 

  7. E. A. Carlen, J. Funct. Anal, 101, 194–211 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Kagan and Z. Landsman, Statist. Probab. Lett., 32, 175–179 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. C. W. Helstrom, Quantum Detection and Estimation Theory, Acad. Press, New York (1976).

    Google Scholar 

  10. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory [in Russian], Nauka, Moscow (1980); English transi. (North-Holland Ser. Statist. Probab., Vol. 1), North-Holland, Amsterdam (1982).

    Google Scholar 

  11. S. L. Braunstein and C M. Caves, Phys. Rev. Lett., 72, 3439–3443 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. D. Petz, Linear Algebra Appl, 244, 81–96 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  13. E. P. Wigner and M. M. Yanase, Proc. Natl. Acad. Sci. USA, 49, 910–918 (1963).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. P. Gibilisco and T. Isola, J. Math. Phys., 44, 3752–3762 (2003); arXiv:math/0304170v1 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. S. Luo, Proc. Amer. Math. Soc, 132, 885–890 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Luo and Q. Zhang, Phys. Rev. A, 69, 032106 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Luo and Q. Zhang, IEEE Trans. Inform. Theory, 50, 1778–1782 (2004); 51, 4432 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Chen and S. Luo, Front. Math. China, 2, 359–381 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Hansen, Proc. Natl. Acad. Sci. USA, 105, 9909–9916 (2008); arXiv:math-ph/0607049v6 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Cai, N. Li, and S. Luo, J. Phys. A, 41, 135301 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  21. E. H. Lieb, Adv. Math., 11, 267–288 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  22. E. H. Lieb and M. B. Ruskai, Phys. Rev. Lett., 30, 434–436 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Uhlmann, Comm. Math. Phys., 54, 21–32 (1977).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. H. Kosaki, Comm. Math. Phys., 87, 315–329 (1982).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge (2000).

    MATH  Google Scholar 

  26. F. Hansen, J. Stat. Phys., 126, 643–648 (2007); arXiv:math-ph/0609019v2 (2006).

    MATH  Google Scholar 

  27. S. Luo, J. Stat. Phys., 128, 1177–1188 (2007).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 165, No. 2, pp. 370–384, November, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Luo, S. Clocks and fisher information. Theor Math Phys 165, 1552–1564 (2010). https://doi.org/10.1007/s11232-010-0129-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0129-9

Keywords

Navigation