Skip to main content
Log in

Uplink SINR and rate analysis in massive MIMO systems with two-layer linear receiver

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In a previous work, a two-layer linear receiver was proposed as a low-complexity scheme that can achieve a good trade-off between performance and complexity in a massive multiple-input multiple-output (MIMO) context. For this scheme, the antenna array is split up into a number of subsets and multi-cell minimum mean-square-error (M-MMSE) combining is applied in each subset at the first layer. Then, the resulting outputs are combined using maximal-ratio combining (MRC) at the second layer. This paper presents a more complete performance analysis. First, we provide an entirely analytical derivation of the distribution of the output signal-to-noise-and-interference ratio (SINR) of first-layer processing based on multivariate statistical theory. The analysis includes both cases where the subset size is smaller or greater than the total number of signals. Furthermore, upper bounds and approximations on the average uplink SINR and achievable rate are derived. Numerical simulations confirm our analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elhoushy, S., Ibrahim, M., & Hamouda, W. (2021). Cell-Free Massive MIMO: A Survey. IEEE Communications Surveys & Tutorials, 24(1), 492–523. https://doi.org/10.1109/MCOM.2014.6736761

    Article  Google Scholar 

  2. Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142. https://doi.org/10.1109/MNET.001.1900287

    Article  Google Scholar 

  3. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transcation Wireless Communication, 9(11), 3590–3600. https://doi.org/10.1109/TWC.2010.092810.091092

    Article  Google Scholar 

  4. Björnson, E., Sanguinetti, L., Wymeersch, H., Hoydis, J., & Marzetta, T. L. (2019). Massive MIMO is a reality-What is next?: Five promising research directions for antenna arrays. Digital Signal Processing, 94, 3–20.

    Article  Google Scholar 

  5. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., & Tufvesson, F. (2012). Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Processing Magazine,30(1), 40–60. https://doi.org/10.1109/MSP.2011.2178495

  6. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? IEEE Journal Sel. Areas Communication, 31(2), 160–171. https://doi.org/10.1109/MSP.2011.2178495

    Article  Google Scholar 

  7. Saatlou, O., Ahmad, M. O., & Swamy, M. N. S. (2017). “Spectral Efficiency maximization of single cell massive multiuser MIMO systems via optimal power control with ZF receiver,”In Proc (pp. 1–5). Montreal, QC, Canada: IEEE. PIMRC.

  8. Boukhedimi, I., Kammoun, A., & Alouini, M. (2019). LMMSE receivers in uplink massive MIMO systems with correlated Rician fading. IEEE Transcation Communication, 67(1), 230–243.

    Article  Google Scholar 

  9. Li, X., Björnson, E., Larsson, E. G., Zhou, S., & Wang, J. (2017). Massive MIMO with multi-Cell MMSE processing: exploiting all pilots for interference suppression. EURASIP Journal on Wireless Communications and Networking, 1, 117.

    Article  Google Scholar 

  10. Björnson, E., Hoydis, J., & Sanguinetti, L. (2018). Massive MIMO has unlimited capacity. IEEE Transcation Wireless Communication, 17(1), 574–590. https://doi.org/10.1109/TWC.2017.2768423

    Article  Google Scholar 

  11. Sanguinetti, L., Björnson, E., & Hoydis, J. (2020). Toward massive MIMO 2.0: understanding spatial correlation, interference suppression, and Pilot contamination. IEEE Transcation Communications, 68(1), 232–257. https://doi.org/10.1109/TCOMM.2019.2945792

    Article  Google Scholar 

  12. Boukhedimi, I., Kammoun, A., & Alouini, M. S. (2020). Multi-Cell MMSE combining over correlated Rician channels in massive MIMO systems. IEEE Wireless Communications Letters, 91, 12–16. https://doi.org/10.1109/LWC.2019.2939305

    Article  Google Scholar 

  13. Abid, W., Roy, S., & Ammari, M. L. (2019). Uplink performance analysis for massive MIMO linear processing. IEEE Access, 7, 180749–180760. https://doi.org/10.1109/ACCESS.2019.2959580

    Article  Google Scholar 

  14. Jiang, Y., Varanasi, M. K., & Li, J. (2011). Performance analysis of ZF and MMSE equalizers for MIMO systems: an in-depth study of the high SNR regime. IEEE Transction Information Theory, 57(4), 2008–2026. https://doi.org/10.1109/TIT.2011.2112070

    Article  Google Scholar 

  15. Wang, B., Chang, Y., & Yang, D. (2014). On the SINR in massive MIMO networks with MMSE receivers. IEEE Communications Letters, 18(11), 1979–1982. https://doi.org/10.1109/ICC.2014.6884144

    Article  Google Scholar 

  16. Kang, H., et al. (2008). Analytical framework for optimal combining with arbitrary-power interferers and thermal noise. IEEE Transctions Vehicular Technology, 57(3), 1564–1575. https://doi.org/10.1109/TVT.2007.907293

    Article  Google Scholar 

  17. Mallik, R. K., et al. (2004). Bit-error probability for optimum combining of binary signals in the presence of interference and noise. IEEE Transction Wireless Communication, 3(2), 395–407. https://doi.org/10.1109/TWC.2003.821182

    Article  Google Scholar 

  18. Pivaro, G. F., Kumar, S., Fraidenraich, G., & Dias, C. F. (2017). On the exact and approximate eigenvalue distribution for sum of Wishart matrices. IEEE Transactions on Vehicular Technology, 66(11), 10537–10541.

    Article  Google Scholar 

  19. Bodnar, T., Mazur, S., & Okhrin, Y. (2015). Distribution of the product of a singular Wishart matrix and a normal vector. Theory of Probability and Mathematical Statistics, 91, 1–15.

    Article  Google Scholar 

  20. Tulino, A.M., Verdu, S. (2004). “Random matrix theory and wireless communications,” Foundations and Trends in Commun. and Info. Theory., vol. 1, no. 1,

  21. Mood, T.K., Stirling, W.C.(2000). “Mathematical Methods and Algorithms for Signal Processing”, Prentice Hall,

  22. Srivastava, M. S. (2003). Singular Wishart and multivariate beta distributions. Annals of Statistics, 31(5), 1537–1560.

    Article  Google Scholar 

  23. Kumar, S. (2014). Eigenvalue statistics for the sum of two complex Wishart matrices. Europhysics Letters, 107(6), 60002.

    Article  Google Scholar 

  24. Li, P., Paul, D., & Narasimhan, R., & Cioffi, J. (2006). On the distribution of SINR for the MMSE MIMO receiver and performance analysis. IEEE Trans. Inform. Theory. https://doi.org/10.1109/TIT.2005.860466

  25. Kim, N., Lee, Y., & Park, H. (2008). Performance Analysis of MIMO System with Linear MMSE Receiver. IEEE Transactions Wireless Communication, 7(11), 4474–4478.

    Article  Google Scholar 

  26. Shah, A., & Haimovich, A. M. (1998). Performance analysis of optimum combining in wireless communications with Rayleigh fading and cochannel interference. IEEE Transactions Communication, 46(4), 473–479. https://doi.org/10.1109/26.664303

    Article  Google Scholar 

  27. Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. NewYork: J. Wiley & Sons.

    Book  Google Scholar 

  28. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products (7th ed.). Amsterdam: Elsevier/Academic Press.

    Google Scholar 

Download references

Funding

This work was supported by the National Sciences and Engineering Research Council (NSERC) of Canada through its Discovery Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wahiba Abid.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In this appendix, we provide the derivation of (27). From (26), the expression for the PDF of \(\gamma _{mk}\) can be expanded by applying the binomial theorem to the polynomial \(\left( x-t\right) ^{N-d_{s}-1}\) in the integrand, i.e.

$$\begin{aligned} f_{\gamma _{mk}}(x)= & {} \dfrac{\Gamma (N\!+\!1)\,P_{0}\, \sigma _{n}^{2(N-d_{s})}\,e^{- \frac{\sigma _{n}^{2}}{P_{0}}x}}{\Gamma (d_{s}) \Gamma (N\!\!-\! d_{s}\!+\!1) \Gamma (N\!-\!d_{s}) \alpha _{s}^{N\!-d_{s}+1}} \nonumber \\{} & {} \; \times \, \sum \limits _{i=0}^{N\!-\!d_{s}\!-\!1} \! (-1)^{i} \left( {\begin{array}{c}N\!\!-\!d_{s}\!-\!1\\ i\end{array}}\right) x^{N-d_{s}-i-1} \nonumber \\[7pt]{} & {} \; \times \, \int _{0}^{x} \frac{t^{d_{s}+i-1}}{\left( \frac{P_{0}}{\alpha _{s}}+t \right) ^{N+1}} \, e^{\frac{\sigma _{n}^{2}}{P_{0}}t} \; dt. \ \end{aligned}$$
(A1)

Let

$$\begin{aligned} I= \int _{0}^{x} \frac{t^{d_{s}+i-1}}{\left( \frac{P_{0}}{\alpha _{s}}+t\right) ^{N+1}} \, e^{\frac{\sigma _{n}^{2}}{P_{0}}t} \; dt. \end{aligned}$$
(A2)

Then, the integral can be further expanded using the power series representation of the exponential function, i.e.

$$\begin{aligned} {} I= & {} \sum \limits _{i=0}^{\infty } \frac{1}{j!} \left( \frac{\sigma _{n}^{2}}{P_{0}}\right) ^{j} \int _{0}^{x} \frac{t^{d_{s}+i+j-1}}{\left( \frac{P_{0}}{\alpha _{s}}+t\right) ^{N+1}} \; dt \nonumber \\[3pt]\overset{(a)}{=} & {} \sum \limits _{i=0}^{\infty } \frac{1}{j!} \left( \frac{\sigma _{n}^{2}}{P_{0}}\right) ^{j} \left( \frac{\alpha _{s}}{P_{0}}\right) ^{N+1} \frac{x^{d_{s}+i+j}}{d_{s}+i+j} \times \nonumber \\ {}{} & {} {}_2F_1\left( N{+}1,d_{s}\!{+}\!i\!+\!j;d_{s}\!{+}\!i\!+\!j+1;-\frac{\alpha _{s}}{P_{0}}x\right) , \end{aligned}$$
(A3)

where the integral is solved in step (a) by virtue of [28, eq. 3.194-1]. We note that \({}_2F_1\left( a,b;c;z\right) \) is the Gaussian hypergeometric function. Finally, substituting (A3) in (A1), we obtain the desired result (27).

Appendix B

From (40), we apply the change of variables \(s=t-\sigma _{n}^{2}x\) to obtain

$$\begin{aligned} {} \! \! \! \! \! f_{\gamma ^{u}_{mk}}(x)= & {} \dfrac{ e^{ -\frac{ \sigma _{n}^{2}x}{P_{0}} } }{\Gamma (N)\,\Gamma (d_{s}\!-\!N\!+\!1)\;\alpha _{s}^{d_{s}\!-\!N\!+\!1}P_{0}^{N}\, x^{d_{s}\!-\!N\!+2}} \times \nonumber \\{} & {} \; \int _{0}^{\infty } \, s^{d_{s}-N} \Big (s+\sigma _{n}^{2}x\Big )^{N} \! e^{-s \left( \frac{1}{P_{0}}+\frac{1}{\alpha _{s}x}\right) } \,ds. \end{aligned}$$
(B4)

Performing a binomial expansion of the polynomial in the integrand yields

$$\begin{aligned} {} \! \! \! \! \! \! f_{\gamma ^{u}_{mk}}(x)= & {} \dfrac{ e^{ -\frac{ \sigma _{n}^{2}x}{P_{0}} } }{\Gamma (N)\,\Gamma (d_{s}\!-\!N\!+\!1)\;\alpha _{s}^{d_{s}\!-\!N\!+\!1}P_{0}^{N}\, x^{d_{s}\!-\!N\!+2}} \times \nonumber \\ {}{} & {} \sum \limits _{i=0}^{N} \left( {\begin{array}{c}N\\ i\end{array}}\right) \left( \sigma _{n}^{2}x\right) ^{i} \int _{0}^{\infty } \! s^{d_{s}-i} e^{-s \left( \frac{1}{P_{0}}+\frac{1}{\alpha _{s}x}\right) } ds, \end{aligned}$$
(B5)

where the resulting integral corresponds to the definition of the Gamma function. Therefore, with some manipulations, we obtain the desired result (41).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, W., Roy, S. & Ammari, M.L. Uplink SINR and rate analysis in massive MIMO systems with two-layer linear receiver. Telecommun Syst 83, 177–188 (2023). https://doi.org/10.1007/s11235-023-01003-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-023-01003-7

Keywords

Navigation