Skip to main content

Advertisement

Log in

Potentiating intra-arterial sonothrombolysis for acute ischemic stroke by the addition of the ultrasound contrast agents (Optison™ & SonoVue®)

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Transcranial ultrasound in combination with intravenously administered ultrasound contrast agents (UCA) in the presence or absence of recombinant tissue plasminogen activator (rt-PA) has been widely evaluated as a new modality for treatment of ischemic stroke. Despite the successful demonstration of accelerated clot lysis there are inherent limitations associated with this modality such as inconsistency in temporal window thickness and/or potential serious cardiopulmonary reactions to intravenous administration of UCA that prevent broad application to ischemic stroke populations. As a complementary modality, we evaluated potential lysis enhancement by intra-arterial ultrasound with concurrent intra-clot delivery of UCA and rt-PA. To this end, clots were formed with average pore diameter similar to clinically retracted clots by adjusting the thrombin concentration. Physical characteristic and retention of UCA after delivery through the catheter as a function of clinically relevant flow rates of 6, 12, 18 ml/h were determined using a microscopic method. The ability of the UCA employed in this study, Optison and SonoVue, to penetrate into the clot was verified using ultrasound B-mode imaging. Clot lysis as a function of rt-PA concentration, 0.009 through 0.5 mg/ml, in the presence and absence of UCA diluted to 1:10, 1:100, and 1:200 v/v at two Peak rarefaction acoustic pressures of 1.3 and 2.1 MPa were evaluated using a weighing method. The study results suggest the addition of only 0.02 ml of 1:100 diluted UCA to rt-PA of 0.009, 0.05, 0.3, and 0.5 mg/ml can enhance the lysis rate by 3.9, 2.6, 1.9 and 1.8 fold in the presence of peak rarefaction acoustic pressure of 1.3 MPa and by 5.1, 3.4, 2.6, 3.1 in the presence of peak rarefaction acoustic pressure of 2.1 MPa, respectively. In addition, Optison and SonoVue demonstrated comparable effectiveness in enhancing the clot lysis rate. Addition of UCA to intra-arterial sonothrombolysis could be considered as a viable treatment option for ischemic stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alexandrov AV, Burgin WS, Demchuk AM, El-mitwalli A, Grotta JC (2001) Speed of intracranial clot lysis with intravenous tissue plasminogen activator therapy: sonographic classification and short-term improvement. Circulation 103:2897–2902

    CAS  PubMed  Google Scholar 

  2. Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: A Meta-Analysis. Stroke 38:967–973

    Article  PubMed  Google Scholar 

  3. The National Institute of Neurological Disorders, Stroke rt-PA Stroke study Group (1995) Tissue Plasminogen Activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  4. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S, Atlantis study investigators (1999) Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. J Am Med Assoc 282:2019–2026

    Article  CAS  Google Scholar 

  5. Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF (2007) Guidelines for the early management of adults with ischemic stroke: A guideline from the American Heart association/American Stroke Association Stroke Council, Clinical cardiology Council. Cardiovascular Radiology and Intervention council, and the atherosclerotic Peripheral vascular disease and quality of care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38:1655–1711

    Article  PubMed  Google Scholar 

  6. Del Zoppo GJ, Saver JL, Jauch EC, Adams HP (2009) Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American heart association/American stroke association. Stroke 40:2945–2948

    Article  PubMed  Google Scholar 

  7. Del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M (1998) PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery. Stroke 29:4–11

    PubMed  Google Scholar 

  8. Khatri P, Neff J, Broderick JP, Khoury JC, Carrozzella J, Tomsick T (2005) Revascularization end points in stroke interventional trials: recanalization versus reperfusion in IMS I. Stroke 36:2400–2403

    Article  CAS  PubMed  Google Scholar 

  9. Francis CW, Onundarson PT, Carstensen EL, Blinc A, Meltzer RS, Schwarz K, Marder VJ (1992) Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 90:2063–2068

    Article  CAS  PubMed  Google Scholar 

  10. The IMS II trial investigators (2007) The interventional management of stroke (IMS) II study. Stroke 38:2127–2135

    Article  Google Scholar 

  11. Molina Ca, Ribo M, Rubiera M, Montaner J, Santamarina E, Delgado-Mederos R, Arenillas JF, Huertas R, Purroy F, Delgado P, Alvarez-Sabin J (2006) Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 37:425–429

    Article  CAS  PubMed  Google Scholar 

  12. Rubiera M, Ribo M, Delgado-Mederos R, Santamarina E, Maisterra O, Delgado P, Montaner J, Alzarez-Sabin J, Molina CA (2008) Do bubble characteristics affect recanalization in stroke patients treated with microbubb-enhanced sonothrombolysis? Ultrasound Med Biol 34:1573–1577

    Article  PubMed  Google Scholar 

  13. Tsivgoulis G, Alexandrov AV, Sloan MA (2009) Advances in transcranial Doppler ultrasonography. Curr Neurol Neurosci Rep 9:46–54

    Article  PubMed  Google Scholar 

  14. Prokop AF, Soltani A, Roy RA (2007) Cavitational mechanisms in ultrasound-accelerated fibrinolysis. Ultrasound Med Biol 33:924–933

    Article  PubMed  Google Scholar 

  15. Soltani A, Prokop AF, Vaezy S (2008) Stability of alteplase in presence of cavitation. Ultrasonics 48:109–116

    Article  CAS  PubMed  Google Scholar 

  16. Carr ME, Hardin CL (1987) Fibrin has larger pores when formed in the presence of erythrocytes. Am J Physiol Heart Circ Physiol 253:1069–1073

    Google Scholar 

  17. Soltani A, Volz KR, Hansmann DR (2008) Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis. Phys Med Biol 53:6837–6847

    Article  PubMed  Google Scholar 

  18. Saunders HM, Neath PJ, Brockman DJ (1998) B-mode and Doppler ultrasound imaging of the spleen with canine splenic torsion: a retrospective evaluation. Vet Radiol Ultrasound 39:349–353

    Article  CAS  PubMed  Google Scholar 

  19. Harpaz A, Chen X, Francis CW, Marder VJ, Meltzer RS (1993) Ultrasound enhancement of thrombolysis and reperfusion in vitro. J Am Coll Cardiol 21:1507–1511

    Article  CAS  PubMed  Google Scholar 

  20. IEC 62359 (2005) Ultrasonics-field characterization-test methods for the determination of thermal and mechanical indices related to medical diagnostic ultrasonic fields. International Electrotechnical Commission, Switzerland

    Google Scholar 

  21. Vuille C, Nidorf M, Morrissey RL, Newell JB, Weyman AE, Picard MH (1994) Effect of static pressure on the disappearance rate of specific echocardiographic contrast agents. J Am Soc Echocardiogr 7:347–354

    CAS  PubMed  Google Scholar 

  22. Brayman AA, Azadniv M, Miller MW (1996) Effect of static pressure on acoustic transmittance of albunex microbubble suspensions. J Acoust Soc Am 99:2403–2408

    Article  CAS  PubMed  Google Scholar 

  23. Wu Y, Unger EC, MaCreery TP, Switzer RH, Shen D, Wu G, Vielhauer MD (1998) Binding and lysing of blood clots using MRX-408. Invest Radiol 33:880–885

    Article  CAS  PubMed  Google Scholar 

  24. Coussios CC, Farny CH, Ter Haar G, Roy RA (2007) Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU). Int J Hyperth 23:105–120

    Article  CAS  Google Scholar 

  25. Mahon BR, Nesbit GM, Barnwell SL, Clark W, Marotta TR, Weill A, Teal PA, Qureshi AI (2003) North American clinical experience with EKOS Microlysus Infusion catheter for the treatment of embolic stroke. Am J Neuroradiol 24:534–538

    PubMed  Google Scholar 

  26. Alexandrov AV, Demchuck AM, Burgin WS, Robinson DJ, Grotta JC, CLOTBUST Investigators (2004) Ultrasound-enhanced thrombolysis for acute ischemic stroke: phase I. Findings of the CLOTBUST trial. J Neuroimaging 14:113–117

    PubMed  Google Scholar 

  27. Saqqur M, Tsivgoulis G, Molina CA, Demchuk AM, Barreto A, Spengos K, Forteza A, Mikulik R, Sharma VK (2008) Design of a prospective multi-national clotbust collaboration on reperfusion therapies for stroke (CLOTBUST-PRO). Stroke 3:66–72

    Article  Google Scholar 

  28. Tsivgoulis G, Eggers J, Ribo M, Perren F, Saqqur M, Rubiera M, sergentanis TN, Vadikilias K, Larrue V, Molina CA, Alexandrov AV (2010) Safety and efficacy of ultrasound-enhanced thrombolysis a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke. doi:10.1161/Strokeaha.109.563304

  29. Deng CX, Xu Q, Apfel RE et al (1996) In vitro measurements of inertial cavitation thresholds in human blood. Ultrasound Med Biol 22:939–948

    Article  CAS  PubMed  Google Scholar 

  30. Church CC (2002) Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol 28:1349–1364

    Article  PubMed  Google Scholar 

  31. Blinc A, Francis CW, Trudnowski J, Carstensen E (1993) Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood 81:2636–2643

    CAS  PubMed  Google Scholar 

  32. Everbach E, Francis CW (2000) Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 26:1153–1160

    Article  CAS  PubMed  Google Scholar 

  33. Soltani A (2005) The safety of high frequency, low intensity ultrasound to enhance thrombolysis. In: Official proceedings of ISTU 2005, pp 233–238

  34. Siddiqi F, Odrljin TM, Fay PJ et al (1998) Binding of tissue-plasminogen activator to fibrin: effect of ultrasound. Blood 91:2019–2025

    CAS  PubMed  Google Scholar 

  35. Sakharov DV, Hekkenberg Rt, Rijken DC (2000) Acceleration of fibrinolysis by high-frequency ultrasound the contribution of acoustic streaming and temperature rise. Thromb Res 100:333–340

    Article  CAS  PubMed  Google Scholar 

  36. Majumdar S, Senthil Kumar P, Pandit AB (1998) Effect of liquid-phase properties on ultrasound intensity and cavitational activity. Ultrason Sonochem 5:113–118

    Article  CAS  PubMed  Google Scholar 

  37. Soltani A, Volz KR, Hansmann DR (2008) Effect of constant versus variable ultrasound operating parameters on ultrasound-enhanced thrombolysis. Cerebrovasc Dis 26(Suppl 1):10

    Google Scholar 

  38. Ng K, Liu Y (2002) Therapeutic ultrasound: Its application in drug delivery. Med Res Rev 22:204–223

    Article  CAS  PubMed  Google Scholar 

  39. Hajri Z, Boukadoum M, Hamam H, Fontaine R (2005) An investigation of the physical forces leading to thrombosis disruption by cavitation. J Thromb Thrombolysis 20:27–32

    Article  PubMed  Google Scholar 

  40. Lai CY, Wu CH, Chen CC, Li PC (2006) Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability. Ultrasound Med Biol 32:1931–1941

    Article  PubMed  Google Scholar 

  41. Elder S (1958) Cavitation microstreaming. J Acoust Soc Am 31:54–64

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge National Institute of Neurological Disorder and Stroke agency (NINDS) at the National Institute of Health (NIH) for funding this research by grant No. 5R21NS053418-02. Its contents are the authors’ sole responsibility and do not necessarily represent the official views of NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azita Soltani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltani, A., Singhal, R., Obtera, M. et al. Potentiating intra-arterial sonothrombolysis for acute ischemic stroke by the addition of the ultrasound contrast agents (Optison™ & SonoVue®). J Thromb Thrombolysis 31, 71–84 (2011). https://doi.org/10.1007/s11239-010-0483-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-010-0483-3

Keywords

Navigation