Skip to main content
Log in

A Passiflora homolog of a D-type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In higher plants, one of the major components of developmental processes is cell division. The cell division cycle in plants is controlled by cyclins and cyclin-dependend kinases. Nutrient and hormonal signals can influence the roles that D-type cyclins play in the G1-to-S phase transition. Auxins and cytokinins are long known to be important plant hormones controlling plant growth. Additionally, as sucrose is the major transported carbon source in higher plants, it is possible that it plays a major role in cell division. To access the molecular aspects of the effect of auxin, cytokinin and sucrose on the regulation of cell cycle machinery and plant development, we cloned a Passiflora morifolia putative homolog to a D-type cyclin, PmCYCD1, which showed high sequence similarity to other known plant D-type cyclins. We examined the expression patterns of PmCYCD1 during callus induction and growth in in vitro conditions. We observed incremented expression levels of PmCYCD1 correlated to increasing concentrations of sucrose, α-naphthalene acetic acid and 6-benzyladenine in the culture medium. Additionally, the results of in situ hybridization experiments indicated a dynamic spatial expression pattern for PmCYCD1 during callus growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ach RA, Durfee T, Muller AB, Taranto P, Hanley-Bowdoin L, Zambryski PC, Gruissem W (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Barroco RM, DeVeylder L, Magyar Z, Engler G, Inzé D, Mironov V (2003) Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis thaliana with a function unrelated to cell division. Cell Mol Life Sci 60:401–412

    Article  PubMed  CAS  Google Scholar 

  • Berckmans B, De Veylder L (2009) Transcriptional control of the cell cycle. Curr Opin Plant Biol 12:599–605

    Article  PubMed  CAS  Google Scholar 

  • Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155

    PubMed  CAS  Google Scholar 

  • Boniotti MB, Gutierrez C (2001) A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex. Plant J 28:341–350

    Article  PubMed  CAS  Google Scholar 

  • Cho JW, Park SC, Shin EA, Kim CK, Han W, Sohn SI, Song PS, Wang MH (2004) Cyclin D1 and p22ack1 play opposite roles in plant growth and development. Biochem Biophys Res Commun 324:52–57

    Article  PubMed  CAS  Google Scholar 

  • Cutri L, Dornelas MC (2012) PASSIOMA: exploring expressed sequence tags during flower development in Passiflora spp. Comp Func Genomics. doi:10.1155/2012/510549

    Google Scholar 

  • Dahl M, Meskiene I, Bogre L, Ha DTC, Swoboda I, Hubmann R, Hirt H, Heberle-Bors E (1995) The D-type alfalfa cyclin gene cycMs4 complements G(I) cyclin-deficient yeast and is induced in the G(1) phase of the cell cycle. Plant Cell 7:1847–1857

    PubMed  CAS  Google Scholar 

  • Dangl JL, Preuss D, Schroeder JI (1985) Talking through walls: signaling in plant development. Cell 83:1071–1077

    Article  Google Scholar 

  • De Almeida-Engler J, Deveylder L, De Groodt R, Rombauts S, Boudolf V, De Meyer B, Hemerly A, Ferreira P, Beeckman T, Karimi M, Hilson P, Inzé D, Engler G (2009) Systematic analysis of cell-cycle gene expression during Arabidopsis development. Plant J 59:645–660

    Article  PubMed  Google Scholar 

  • De Veylder L, De Almeida-Engler J, Burssens S, Manevski A, Lescure B, Van Montagu M, Engler G, Inzé D (1999) A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta 208:453–462

    Article  PubMed  Google Scholar 

  • Dewitte W, Murray JA (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  PubMed  CAS  Google Scholar 

  • Dewitte W, Scofield A, Alcasabas A, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray JAH (2007) Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci USA 104:14537–14542

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Sherr CJ (1997) A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Mol Cell Biol 17:7362–7374

    PubMed  CAS  Google Scholar 

  • Diehl JA, Zindy F, Sherr CJ (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquintinproteasome pathway. Genes Dev 11:957–972

    Article  PubMed  CAS  Google Scholar 

  • Diehl JA, Cheng MG, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase 3 beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511

    Article  PubMed  CAS  Google Scholar 

  • Dong Q, Zhao Y, Jiang H, He H, Zhu S, Cheng B, Xiang Y (2011) Genome-wide identification and characterization of the cyclin gene family in Populus trichocarpa. Plant Cell Tiss Organ Cult 107:55–67

    Article  CAS  Google Scholar 

  • Dornelas MC, Vieira MLC (1994) Tissue culture on species of Passiflora. Plant Cell Tiss Organ Cult 36:211–217

    Article  CAS  Google Scholar 

  • Dornelas MC, Van Lammeren AA, Kreis M (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J 21:419–429

    Article  PubMed  CAS  Google Scholar 

  • Dornelas MC, Fonseca TC, Rodriguez APM (2006) Brazilian passionflowers and novel passionate tropical flowering gems. In: Silva JAT (ed) Floriculture, ornamental and plant biotechnology, vol 4. Global Science Books, London, pp 629–639

    Google Scholar 

  • Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM (1993) Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73:487–497

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer LE, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222

    Google Scholar 

  • Gaudin V, Lunness PA, Fobert PR, Tower M, Riou-Khamlichi C, Murray JAH, Coen E, Doonan JH (2000) The expression of D-cyclin genes defines distinct developmental zones in snap-dragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiol 122:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez N, Beemster GT, Inzé D (2009) David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops? Curr Opin Plant Biol 12:157–164

    Article  PubMed  CAS  Google Scholar 

  • Halford NG, Paul MJ (2003) Carbon metabolite sensing and signaling. Plant Biotechnol J 1:381–398

    Article  PubMed  CAS  Google Scholar 

  • Harashima H, Schnittger A (2010) The integration of cell division, growth and differentiation. Curr Opin Plant Biol 13:66–74

    Article  PubMed  CAS  Google Scholar 

  • Harashima H, Kato K, Shinmyo A, Sekine M (2007) Auxin is required for the assembly of A-type cyclin-dependent kinase complexes in tobacco cell suspension culture. J Plant Physiol 164:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Hartig K, Beck E (2005) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol 8:389–396

    Article  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Huntley R, Healy JMS, Freeman D, Lavender P, De Jager SM, Greenwood J, Makker J, Walker E, Jackman M, Xie Q, Bannister AJ, Kouzarides T, Gutiérrez C, Doonan JH, Murray JA (1998) The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S regulators and plant cyclin D (CycD) proteins. Plant Mol Biol 37:155–169

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, Pavletich NP (1995) Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature 376:313–320

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Murray JAH, Shinmyo A, Sekine M (2006) Cell cycle regulated D3-type cyclins form active complexes with plant-specific B-type cyclin-dependent kinase in vitro. Plant Mol Biol 61:311–327

    Article  PubMed  CAS  Google Scholar 

  • Kono A, Umeda-Hara C, Adachi S, Nagata N, Konomi M, Nakagawa T, Ushimiya H, Umeda M (2007) The Arabidopsis D-type cyclin CYCD4 controls cell division in the stomatal lineage of the hypocotyl epidermis. Plant Cell 19:1265–1277

    Google Scholar 

  • Koroleva OA, Tomlinson M, Parinyapong P, Sakvarelidze L, Leader D, Shaw P, Doonan JH (2004) CYCD1, a putative G1 cyclin from Antirrhinum majus, accelerates the cell cycle in cultured tobacco BY-2 cells by enhancing both G1/S entry and progression through S and G2 phases. Plant Cell 16:2364–2379

    Article  PubMed  CAS  Google Scholar 

  • Kwon HK, Wang MH (2011) The D-type cyclin gene (Nicta;CycD3;4) controls cell cycle progression in response to sugar availability in tobacco. J Plant Physiol 168:133–139

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Jin S, Liu X, Tan J, Yang X, Zhang X (2012) Overexpression of Arabidopsis cyclin D2;1 in cotton results in leaf curling and other plant architectural modifications. Plant Cell Tiss Organ Cult 110:261–273

    Article  CAS  Google Scholar 

  • Marcel M, Murray JAH (2001) Cell cycle controls and the development of plant form. Curr Opin Plant Biol 4:44–49

    Article  Google Scholar 

  • Menges M, Murray JAH (2007) Plant D-type cyclins: structure, roles and functions. In: Bryant J, Francis D (eds) Eukaryotic cell cycle, society for experimental biology seminar series, vol 59. Taylor and Francis, Abingdon, pp 1–28

    Google Scholar 

  • Menges M, Samland AK, Planchais S, Murray JAH (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18:893–906

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Pavesi G, Morandini P, Bogre L, Murray JAH (2007) Genomic organization and evolutionary conservation of plant D-type cyclins. Plant Physiol 145:1558–1576

    Article  PubMed  CAS  Google Scholar 

  • Montero-Cortés M, Rodríguez-Paredes F, Burgeff C, Pérez-Nuñes T, Cordova I, Oropeza C, Verdeil J-L, Saénz L (2010) Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Organ Cult 102:251–258

    Article  Google Scholar 

  • Montero-Cortés M, Cordova I, Verdeil J-L, Hocher V, Ake AP, Sandoval A, Oropeza C, Saénz L (2011) GA3 induces expression of E2F-like genes and CDKA during in vitro germination of zygotic embryos of Cocos nucifera (L.). Plant Cell Tiss Organ Cult 107:461–470

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagami H, Kawamura K, Sugisaka K, Sekine M, Shinmyo A (2002) Phosphorilation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco. Plant Cell 14:1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Nieuwland J, Maughan S, Dewitte W, Scofield S, Sanz L, Murray JAH (2009) The D-type cyclin CYCD4;1 modulates lateral root densisty in Arabidopsis by affecting the basal meristem region. Proc Natl Acad Sci USA 106:22528–22533

    Article  PubMed  CAS  Google Scholar 

  • Oakenfull EA, Riou-Khamlichi C, Murray JAH (2002) Plant D-type cyclins and the control of G1 progression. Philos Trans R Soc Lond B Biol Sci 357:749–760

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Planchais S, Samland AK, Murray JAH (2004) Differential stability of Arabidopsis D-type cyclins: CYCD3;1 is a highly unstable protein degraded by a proteasome-dependent mechanism. Plant J 38:616–625

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Doerner P (2001) Cell cycle controls: genome-wide analysis in Arabidopsis. Curr Opin Plant Biol 4:501–506

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by Proteolysis. Trends Biochem Sci 21:267–271

    PubMed  CAS  Google Scholar 

  • Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inzé D, Jacobs T, Kouchi H, Rouzé P, Sauter M, Savouré A, Sorrel DA, Sundaresan V, Murray JA (1996) Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol Biol 33:1003–1018

    Article  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JMS, Murray JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  PubMed  CAS  Google Scholar 

  • Rosa YBCJ, Dornelas MC (2012) In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plan Cell Tiss Organ Cult 108:91–99

    Article  CAS  Google Scholar 

  • Saitou M, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Singh RK, Dasgupta S, Bhattacharya N, Chunder N, Mondal R, Roy A, Mandal S, Roychowdhury S, Panda CK (2005) Deletion in chromosome 11 and Bcl-1/Cyclin-D1 alterations are independently associated with the development of uterine cervical carcinoma. J Cancer Res Clin Oncol 131:395–406

    Article  PubMed  CAS  Google Scholar 

  • Soni R, Carmichael JP, Shah ZH, Murray JA (1995) A family of cyclinD homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7:85–103

    PubMed  CAS  Google Scholar 

  • Sorrell DA, Combettes B, Chaubet-Gigot N, Gigot C, Murray JAH (1999) Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol 119:343–351

    Article  PubMed  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Su’udi M, Cha JY, Ahn I-P, Kwak Y-S, Woo Y-M, Son D (2012) Functional characterization of a B-type cell cycle switch in rice (OsCCS52B). Plant Cell Tiss Organ Cult 111:101–111

    Article  Google Scholar 

  • Thomas BR, Rodriguez RL (1994) Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106:1235–1239

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14:903–916

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, De Pamphilis CW, Ma H (2004) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Huo SN, Guo J, Zhang XS (2006) Wheat D-type cyclin Triae;CYCD2;1 regulates development of transgenic Arabidopsis plants. Planta 224:1129–1140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

To Prof EW Kitajima and Prof F Tanaka for maintaining the electron microscope facility at NAP/MEPA-ESALQ/USP. To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Carnier Dornelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, Y.B.C.J., Aizza, L.C.B., Armanhi, J.S.L. et al. A Passiflora homolog of a D-type cyclin gene is differentially expressed in response to sucrose, auxin, and cytokinin. Plant Cell Tiss Organ Cult 115, 233–242 (2013). https://doi.org/10.1007/s11240-013-0355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0355-6

Keywords

Navigation