Skip to main content
Log in

Cadaverine: a common polyamine in zygotic embryos and somatic embryos of the species Capsicum chinense Jacq.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The behavior of endogenous polyamines was studied in somatic embryos and zygotic embryos of Habanero pepper (Capsicum chinense). In the first part of the work, the polyamine content was evaluated in both types of embryos (somatic and zygotic). As a result, in addition to the common polyamines (putrescine, spermidine and spermine), it was also possible to detect cadaverine, a polyamine rarely found in plants. In general, all the polyamines were found to be more abundant in somatic embryos than in zygotic embryos, with significantly higher contents of putrescine and cadaverine. Subsequently, the content of putrescine, spermidine, spermine and cadaverine, in their different forms (free, bound and conjugated) was determined in somatic embryos which were cultured in non-ventilated and ventilated containers. Detection of polyamines was carried out at 28 and 42 days of culture by the HPLC method. The ethylene content was monitored during the process in both culture conditions (ventilated and non-ventilated). As a result of the analysis, cadaverine was always found present, indicating that it is a common polyamine in the species. Ethylene was detected in containers without ventilation throughout the culture, except during replenishment of the culture medium (R1, R2 and R3). The behavior pattern of each polyamine, analyzed under different culture conditions (ventilated and non-ventilated) and at different moments of culture (28 and 42 days of culture), show that the polyamines are not only involved in morphogenic processes in plants; polyamines are also significantly affected by the surrounding environment. However, the most novel result, presented for the first time in this paper, is that cadaverine is found to be a common polyamine in C. chinense since it is present in both zygotic embryos and somatic embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic Press, San Diego

    Google Scholar 

  • Aboshama HMS (2011) Direct somatic embryogenesis of pepper (Capsicum annuum L.). World Agric Sci 7(6):755–762

    CAS  Google Scholar 

  • Agrawal S, Chandra N (1983) Differentiation of multiple shoot buds and plantlets in cultured embryos of Capsicum annuum L. var. Mathania. Curr Sci 52:645–646

    Google Scholar 

  • Ahmadi B, Shariatpanahi ME, Ojaghkandi MA, Heydari AA (2014) Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L. Plant Cell Tissue Organ Cult 118:497–505

    Article  CAS  Google Scholar 

  • Altman A (1989) Polyamines and plant hormones. In: Bacharach U, Heimer YM (eds) The physiology of polyamines, vol 2. CRC Press, Boca Ratón, pp 121–145

    Google Scholar 

  • Antognoni F, Fornale S, Grimmer C, Komor E, Bagni N (1998) Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204:520–527

    Article  CAS  Google Scholar 

  • Arroyo R, Revilla MA (1991) In vitro plant regeneration from cotyledon and hypocotyl segments in two bell pepper cultivars. Plant Cell Rep 10:414–416

    Article  CAS  PubMed  Google Scholar 

  • Aviles-Viñas SA, Lecona-Guzmán CA, Canto-Flick A, López-Erosa S, Santana-Buzzy N (2013) Morpho-histological and ultrastructural study on direct somatic embryogenesis of Capsicum chinense Jacq. in liquid medium. Plant Biotechnol Rep 7:277–286

    Article  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plant. Amino Acids 20:301–317

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss Org Cult 69(1):1–34

    Article  CAS  Google Scholar 

  • Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Batista DS, Dias LLC, Macedo AF, do Rego MM, do Rego ER, Floh ELS, Finger FL, Otoni WC (2013) Suppression of ethylene levels promotes morphogenesis in pepper (Capsicum annuum L.). In Vitro Cell Dev Biol Plant 49:759–764

    Article  CAS  Google Scholar 

  • Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of the metabolism of polyamines in poplar cells. Plant Physiol 125:2139–2153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biddington NL (1992) The influence of ethylene in plant tissue culture. Plant Growth Regul 11:173–178

    Article  CAS  Google Scholar 

  • Binzel ML, Sankhla N, Joshi S, Sankhla D (1996) In vitro regeneration in chili pepper (Capsicum annuum L.) from “half- seed explants”. Plant Growth Regul 20:287–293

    Article  CAS  Google Scholar 

  • Blankenship SM, Bailey DA, Miller JE (1993) Effects of continuous, low levels of ethylene on growth and flowering of Easter lily. Sci Hortic 53:311–317

    Article  CAS  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

  • Borrell A, Culianez-Macia A, Atabella T, Besford RT, Flores D, Tiburcio AF (1995) Arginine decarboxylase is localized in chloroplasts. Plant Physiol 109:771–776

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buyukalaca S, Mavituna F (1996) Somatic embryogenesis and plant regeneration of pepper in liquid media. Plant Cell Tiss Org Cult 46:227–235

    Article  CAS  Google Scholar 

  • Chi GL, Pua EC (1989) Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Sci 64:243–250

    Article  CAS  Google Scholar 

  • Chi GL, Barfield DG, Sim GE, Pua EC (1990) Effect of AgNO3 and aminoethoxyvinyl-glycine on in vitro shoot and root organogenesis from seedling explants of recalcitrant Brassica genotypes. Plant Cell Rep 9:195–198

    Article  CAS  PubMed  Google Scholar 

  • Chi GL, Pua EC, Goh CJ (1991) Role of ethylene on de novo shoot regeneration from cotyledons of Brassica campestris ssp. pekinensis (Lour) olsson in vitro. Plant Physiol 96:178–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406

    Article  CAS  PubMed  Google Scholar 

  • Chraibi BKM, Latche A, Roustan JP, Fallot J (1991) Stimulation of shoot regeneration from cotyledon of Helianthus annuus by the ethylene inhibitors, silver and cobalt. Plant Cell Rep 8:415–417

    Google Scholar 

  • Dondini L, del Duca S, Dall’Agata L, Bassi R, Gastaldelli M, Della Mea M, di Sandro A, Claparols I, Serafini-Fracassini D (2003) Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta 217:84–95

    CAS  PubMed  Google Scholar 

  • Faure O, Mengoli M, Nougarede A, Bagni N (1991) Polyamine pattern and biosynthesis in zygotic and somatic embryo stages of Vitis vinifera. J Plant Physiol 138:545–549

    Article  CAS  Google Scholar 

  • Feng J, Barker AV (1992) Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses. Part II. J Plant Nutr 15:2471–2490

    Article  CAS  Google Scholar 

  • Finkelstein R, Estelle M, Martínez-Zapater J, Sommerville C (1988) Arabidopsis as a tool for the identification of genes involved in plant development. In: Verma DPS, Deberg RB (eds) Plant gene research. Springer, New York, pp 7–25

    Google Scholar 

  • Galston AW, Kaur-Shawney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Acta Bot 110:197–207

    Article  CAS  Google Scholar 

  • Gamarnik A, Frydman R (1991) Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds. Plant Physiol 97:778–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harini I, Lakshmi-Sita G (1993) Direct somatic embryogenesis and plant regeneration from immature embryos of chilli (Capsicum annuum L.). Plant Sci 89:107–112

    Article  Google Scholar 

  • Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K (2011) Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep 30:1107–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helmy YH, El-Abd SO, Abou-Hadid AF, El-Beltagy U, El-Betagy AS (1994) Ethylene production from tomato and cucumber plants under saline conditions. Egypt J Hortic 21:153–160

    CAS  Google Scholar 

  • Herminghaus S, Schreier PH, McCarthy JEG, Landsmann J, Botterma J, Berlin J (1991) Expression of bacterial lysine decarboxylase gene and transport of the protein into chloroplasts of transgenic tobacco. Plant Mol Biol 17:475–486

    Article  CAS  PubMed  Google Scholar 

  • Husain S, Jain A, Kothari SL (1999) Phenylacetic acid improves bud elongation and in vitro plant regeneration efficiency in Capsicum annuum L. Plant Cell Rep 19:64–68

    Article  CAS  Google Scholar 

  • Kaur-Shawney R, Tiburcio AF, Atabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kevers C, Le Gal N, Monteiro M, Dommes J, Gaspar T (2000) Somatic embryogenesis in Panax ginseng in liquid cultures: a role for polyamine and their metabolic pathways. Plant Growth Regul 31:209–214

    Article  CAS  Google Scholar 

  • Khan H, Siddique I, Anis M (2006) Thidiazuron induced somatic embryogenesis and plant regeneration in Capsicum annum. Biol Plant 50(4):789–792

    Article  CAS  Google Scholar 

  • Kothari SL, Kachhwaha AJS, Ochoa-Alejo N (2010) Chilli peppers — A review on tissue culture and transgenesis. Biotechnol Adv 28(1):35–48

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov V, Shevyakova NI (2007) Polyamines and stress tolerance of plants. Plant Stress 1:50–71

    Google Scholar 

  • Kuznetsov VV, Rakitin VY, Sadomov NG, Dam DV, Stetsenko LA, Shevyakova NI (2002) Do polyamines participate in the long-distance translocation of stress signals in plants? Russ J Plant Physiol 49:120–130

    Article  CAS  Google Scholar 

  • Kuznetsov V, Radyukina NL, Shevyakova NI (2006) Polyamines and stress: biological role, metabolism, and regulation. Russ J Plant Physiol 53(5):658–683

    Article  Google Scholar 

  • Lecona-Guzmán CA, Solís-Marroquín D, Avilés-Viñas S, De los Santos-Briones C, Santana-Buzzy N (2012) Changes in the protein profile of Habanero pepper (Capsicum chinense J.) somatic embryos during development. Afr J Biotechnol 11(47):10761–10768

    Google Scholar 

  • López-Puc G, Canto-Flick A, Barredo-Pool F, Zapata-Castillo P, Montalvo-Peniche MC, Barahona-Pérez F, Santana-Buzzy N (2006) Direct somatic embryogenesis: a highly efficient protocol for in vitro regeneration of Habanero pepper (Capsicum chinense Jacq.). HortScience 41(7):1645–1650

    Google Scholar 

  • Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). J Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Minocha SC, Robie C (1986) The Role of 2,4-D and polyamines in somatic embryogenesis in carrot cell cultures. In: International conference polyamines in life science. Abstract, Tokio

  • Minocha SC, Minocha R, Robie CA (1990) High-performance liquid chromatographic method for the determination of dansyl-polyamines. J Chromatogr 511:177–183

    Article  CAS  Google Scholar 

  • Minocha R, Shortle WC, Long S, Minocha SC (1994) A rapid and reliable procedure for extraction of cellular polyamines and inorganic ions from plant tissues. J Plant Growth Regul 13:187–193

    Article  CAS  Google Scholar 

  • Mohiuddin AKM, Chowdhury MKU, Abdullah ZC, Napis S (1995) The influence of cobalt chloride on in vitro shoot proliferation in cucumber (Cucumis sativus L.). Asian Pac J Mol Biol Biotechnol 3(4):332–338

    Google Scholar 

  • Mohiuddin AKM, Chowdhury MKU, Abdullah ZC, Napis S (1997) Influence of silver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell Tiss Org Cult 51:75–78

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Palavan N, Goren R, Galston AW (1984) Effects of some growth regulators on polyamine biosynthetic enzymes in etiolated pea seedlings. Plant Cell Physiol 25:541–546

    CAS  Google Scholar 

  • Palmer CE (1992) Enhanced shoot regeneration from Brassica campestris by silver nitrate. Plant Cell Rep 11:541–545

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25(3):291–299

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Mitter K, Sen-Raychaudhuri S (2009) Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. Plant Cell Tissue Organ Cult 97:303–311

    Article  CAS  Google Scholar 

  • Pua EC (1993) Cellular and molecular aspects of ethylene on plant morphogenesis of recalcitrant Brassica species in vitro. Bot Bull Acad Sin 34:191–209

    CAS  Google Scholar 

  • Pua EC, Chi GL (1993) De novo shoot morphogenesis and plant growth of mustard (Brassica juncea) in vitro in relation to ethylene. Physiol Plant 88:467–474

    Article  CAS  Google Scholar 

  • Richards FJ (1954) Potassium deficiency in relation to putrescine production. Rapp Commun Huitieme Congr Int Bot Paris 11:1–44

    Google Scholar 

  • Sanatombi K, Sharma GJ (2008) In vitro propagation of Capsicum chinense Jacq. Biol Plant 52(3):517–520

    Article  CAS  Google Scholar 

  • Santana-Buzzy N, Canto-Flick A, Barahona-Pérez F, Montalvo-Peniche MC, Zapata-Castillo PY, Solís-Ruiz A, Zaldívar-Collí A, Gutiérrez-Alonso O, Miranda-Ham ML (2005) Regeneration of Habanero pepper (Capsicum annuum Jacq.) via organogenesis. HortScience 40(6):1829–1831

    Google Scholar 

  • Santana-Buzzy N, Canto-Flick A, Iglesias-Andreu LG, Montalvo-Peniche MC, López-Puc G, Barahona-Pérez F (2006) Improvement of in vitro culturing of Habanero pepper by inhibition of ethylene effects. HortScience 41(2):405–409

    CAS  Google Scholar 

  • Shevyakova NI (1981) Metabolism and physiological role of di- and polyamines in plants. Fiziol Rastenii 28:1052–1061

    CAS  Google Scholar 

  • Shevyakova NI, Kir’yan IG (1995) Features of methionine biosynthesis in salt-resistant cells of Nicotiana sylvestris L. Fiziol Rastenii 42(1):94–99

    Google Scholar 

  • Shevyakova NI, Rakitin VYu, Dam DB, Kuznetsov VV (2000) Cadaverine as a signal of heat shock in plants. Dokl Akad Nauk SSSR 375(5):715–717

    CAS  Google Scholar 

  • Shevyakova NI, Rakitin VY, Doung DB, Sadomov NG, Kuznetsov V (2001) Heat shock-induced cadaverine accumulation and translocation throughout the plant. Plant Sci 161(6):1125–1133

    Article  CAS  Google Scholar 

  • Shevyakova NI, Shorina MV, Rakitin VYu, Stetsenko LA, Kuznetsov VIV (2004) Ethylene-induced production of cadaverine is mediated by protein phosphorylation and dephosphorylation. Dokl Akad Nauk SSSR 395:127–129

    CAS  Google Scholar 

  • Siddikee MA, Chauhan OS, Tongmin SA (2012) Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase- producing halotolerant bacteria. Plant Growth Regul 10:1–8

    Google Scholar 

  • Steiner N, Santa-Catarina C, Silveira V, Floh EIS, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62

    Article  CAS  Google Scholar 

  • Steinitz B, Kusek M, Tabib Y, Paran I, Zelcer A (2003) Pepper (Capsicum annuum L.) regenerates obtained by direct somatic embryogenesis fail to develop a shoot. In vitro Cell Dev Biol Plant 39:296–303

    Article  CAS  Google Scholar 

  • Strogonov BP, Shevyakova NI, Kabanov VV (1972) Diamines in plant metabolism under conditions of salinization. Fiziol Rastenii 19:938–943

    Google Scholar 

  • Suttle JC (1981) Effect of polyamines on ethylene production. Phytochemistry 30:1477–1481

    Article  Google Scholar 

  • Szasz A, Nervo G, Fari M (1995) Screening for in vitro shoot-forming capacity of seedling explants in bell pepper (Capsicum annuum L.) genotypes and efficient plant regeneration using thidiazuron. Plant Cell Rep 14:666–669

    Article  CAS  PubMed  Google Scholar 

  • Tassoni A, Antognoni F, Battistini M, Sanvido O, Bagni N (1998) Characterization of spermidine binding to solubilized plasma membrane proteins from zucchini hypocotyls. Plant Physiol 117(3):971–977

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1986) Polyamine metabolism and osmotic stress. Plant Physiol 82:375–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Us-Camas R, Rivera-Solís G, Duarte-Aké F, De-la-Peña C (2014) In vitro culture: an epigenetic challenge for plants. Plant Cell Tissue Organ Cult 18(2):187–201

    Article  Google Scholar 

  • Valle-Gough RE, Avilés-Viñas SA, López-Erosa S, Canto-Flick A, Gómez-Uc E, Sáenz-Carbonell LA, Ochoa-Alejo N, Santana-Buzzy N (2015) Polyamines and WOX genes in the recalcitrance to plant conversion of somatic embryos of Habanero pepper (Capsicum chinense Jacq.). Afr J Biotechnol 14(7):569–581

    Article  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walter H, Geuns J (1987) High speed HPLC analysis of polyamines in plant tissues. Plant Physiol 83:232–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wheeler RM, Peterson BV, Stutte GW (2004) Ethylene production throughout growth and development of plants. HortScience 39:1541–1545

    CAS  PubMed  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Botella MA (2008) Changes in the polyamine concentration induced by salt stress in seedlings of different species. Plant Growth Regul 56(2):167–177

    Article  CAS  Google Scholar 

  • Zapata-Castillo PY, Canto-Flick A, López-Puc G, Solís-Ruiz A, Barahona-Pérez F, Santana-Buzzy N (2007) Somatic embryogenesis in Habanero pepper (C. chinense Jacq.) from cell suspension. HortScience 42(2):329–333

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Council of Science and Technology (CONACyT), Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Santana-Buzzy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regla-Márquez, C.F., Canto-Flick, A., Avilés-Viñas, S.A. et al. Cadaverine: a common polyamine in zygotic embryos and somatic embryos of the species Capsicum chinense Jacq.. Plant Cell Tiss Organ Cult 124, 253–264 (2016). https://doi.org/10.1007/s11240-015-0889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0889-x

Keywords

Navigation