Skip to main content
Log in

Metabolite profiling of the undifferentiated cultured cells and differentiated leaf tissues of Centella asiatica

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Centella asiatica, a perennial herb renowned for its wide range of nutraceuticals properties, is a valuable source of plant secondary metabolites with various pharmacological activities. Novel approaches to develop alternatives for the production and enrichment of these secondary metabolites are receiving much attention, for example the biotechnological manipulation of undifferentiated cells cultures as a potential source of natural products. This study investigated the differences of the metabolite profiles between undifferentiated cells and differentiated leaf tissues of C. asiatica in comparison to a commercially available herbal medicine supplement. The secondary metabolites were extracted using methanol and analysed on an UHPLC-QTOF-MS platform. Metabolites were further identified and characterised based on their MS-fragmentation patterns and through comparison with authentic standards where available. Results revealed the similarities and dissimilarities and showed inter- and intra- relationships amid the different samples. A total of 18 metabolites including a number of hydroxycinnamic acid derivatives, flavonoids as well as the four centelloids (pentacyclic triterpenoids) were annotated in different sample groups across the different extracts. The results obtained verified that the different biological systems of C. asiatica are chemo-diverse, possibly related to regional and processing differences, and in the case of cells, to the level of cellular differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BPI:

Base peak intensity

CGAs:

Chlorogenic acids

ESI:

Electrospray ionisation

HCAs:

Hydroxycinnamates

HDMS QTOF:

High-definition quadrupole time-of-flight mass spectrometer

MS:

Murashige and Skoog medium

m/z :

Mass-to-charge ratio

Rt:

Retention time

UPHLC:

Ultra-high performance liquid chromatography

References

  • Abu-Reidah IM, Arráez-Román D, Lozano-Sánchez J, Segura-Carretero A, Fernández-Gutiérrez A (2013) Phytochemical characterisation of green beans (Phaseolus vulgaris L.) by using high-performance liquid chromatography coupled with time-of-flight mass spectrometry. Phytochem Anal 24:105–116. doi:10.1002/pca.2385

    Article  CAS  PubMed  Google Scholar 

  • Alakolanga AGAW, Siriwardene AMD, Savitri Kumar N, Jayasinghe L, Jaiswal R, Kuhnert N (2014) LC-MSn identification and characterization of the phenolic compounds from the fruits of Flacourtia indica (Burm. F.) Merr. and Flacourtia inermis Roxb. Food Res Int 62:388–396. doi:10.1016/j.foodres.2014.03.036

    Article  CAS  Google Scholar 

  • Alqahtani A, Tongkao-on W, Li KM, Razmovski-Naumovski V, Chan K, Li GQ (2015) Seasonal variation of triterpenes and phenolic compounds in Australian Centella asiatica (L.) Urb. Phytochem Anal 26:436–443. doi:10.1002/pca.2578

    Article  CAS  PubMed  Google Scholar 

  • Antognoni F, Perellino NC, Crippa S, Dal Toso R, Danieli B, Minghetti A et al (2011) Irbic acid, a dicaffeoylquinic acid derivative from Centella asiatica cell cultures. Fitoterapia 82:950–954. doi:10.1016/j.fitote.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  • Ariffin F, Heong Chew S, Bhupinder K, Karim AA, Huda N (2011) Antioxidant capacity and phenolic composition of fermented Centella asiatica herbal teas. J Sci Food Agric 91:2731–2739. doi:10.1002/jsfa.4454

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology†¯: plant primary metabolism and plant – pathogen interactions. J Exp Bot 58:4019–4026. doi:10.1093/jxb/erm298

    Article  CAS  PubMed  Google Scholar 

  • Bomfim-Patricio MC, Salatino A, Martins AB, Wurdack JJ, Salatino MLF (2001) Flavonoids of Lavoisiera, Microlicia and Trembleya (Melastomataceae) and their taxonomic meaning. Biochem Syst Ecol 29, 711–726. doi:10.1016/S0305-1978(00)00116-2

    Article  CAS  PubMed  Google Scholar 

  • Bonfill M, Mangas S, Moyano E, Cusido RM, Palazón J (2011) Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell Tiss Organ Cult 104:61–67. doi:10.1007/s11240-010-9804-7

    Article  CAS  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851. doi:10.1016/S0168-9452(01)00490-3

    Article  CAS  Google Scholar 

  • Brinkhaus B, Lindner M, Schuppan D, Hahn EG (2000) Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine 7:427–448. doi:10.1016/S0944-7113(00)80065-3

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN (1999) Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J Sci Food Agric 79:362–372. doi:10.1002/(SICI)1097-0010(19990301)79

    Article  CAS  Google Scholar 

  • Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MSn identification of chlorogenic acids. J Agric Food Chem 51:2900–2911. doi:10.1021/jf026187q

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN, Kirkpatrick J, Kuhnert N, Roozendaal H, Salgado PR (2008) LC-MSn analysis of the cis isomers of chlorogenic acids. Food Chem 106:379–385. doi:10.1016/j.foodchem.2007.05.081

    Article  CAS  Google Scholar 

  • Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 39:1–15. doi:10.1002/jms.585

    Article  CAS  PubMed  Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684 doi:10.1016/0141-0229(94)00108-4

    Article  Google Scholar 

  • Farag MA, El Sayed AM, El Banna, Ruehmann S (2015) Metabolomics reveals distinct methylation reaction in MeJa elicited Nigella sativa callus via UPLC = MS and chemometrics. Plant Cell Tissue Organ Cult 122:453–463. doi:10.1007/s11240-015-0782-7

    Article  CAS  Google Scholar 

  • Gallego A, Ramirez-Estrada K, Vidal-Limon HR, Hidalgo D, Lalaleo L, Khan Kayani W et al (2014) Biotechnological production of centellosides in cell cultures of Centella asiatica (L) urban. Eng. Life Sci 14:633–642

    Article  CAS  Google Scholar 

  • Geng P, Sun J, Zhang R, He J, Abliz Z (2009) An investigation of the fragmentation differences of isomeric flavonol-O-glycosides under different collision-induced dissociation based mass spectrometry. Rapid Commun Mass Spectrom 23:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Gray NE, Morré J, Kelley J, Maier CS, Stevens JF, Joseph F, Soumyanath A (2014) Caffeoylquinic acids in Centella asiatica protect against β- amyloid toxicity. J Alzheimers Dis 40:359–373. doi:10.3233/JAD-131913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta A, Verma S, Kushwaha P, Srivastava S, Aks R (2014) Quantitative estimation of asiatic acid, asiaticoside & madecassoside in two accessions of Centella asiatica (L) Urban for morpho-chemotypic variation. Indian J Pharm Educ Res 48:75–79. doi:10.5530/ijper.48.3.9

    Article  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: What have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    Article  CAS  PubMed  Google Scholar 

  • Hashim P (2011) Centella asiatica in food and beverage applications and its potential antioxidant and neuroprotective effect. Int Food Res J 18:1215–1222

    CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422. doi:10.1038/nbt1027

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal R, Deshpande S, Kuhnert N (2011) Profling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leavesby LC-MSn. Phytochem Anal 22:432–441. doi:10.1002/pca.1299

    Article  CAS  PubMed  Google Scholar 

  • James JT, Dubery IA (2009) Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 14:3922–3941. doi:10.3390/molecules14103922

    Article  CAS  PubMed  Google Scholar 

  • James JT, Dubery IA (2011) Identification and quantification of triterpenoid centelloids in Centella asiatica (L.) Urban by densitometric TLC. J Planar Chromatogr 24:82–87. doi:10.1556/jpc.24.2011.1.16

    Article  CAS  Google Scholar 

  • James JT, Meyer R, Dubery IA (2008) Characterisation of two phenotypes of Centella asiatica in Southern Africa through the composition of four triterpenoids in callus, cell suspensions and leaves. Plant Cell Tissue Organ Cult 94:91–99. doi:10.1007/s11240-008-9391-z

    Article  CAS  Google Scholar 

  • James JT, Tugizimana F, Steenkamp PA, Dubery IA (2013) Metabolomic analysis of methyl jasmonate-induced triterpenoid production in the medicinal herb, Centella asiatica (L.) Urban. Molecules 18:4267–4281. doi:10.3390/molecules18044267

    Article  CAS  PubMed  Google Scholar 

  • Khoza BS, Chimuka L, Mukwevho E, Steenkamp PA, Madala NE (2014) The effect of temperature on pressurised hot water extraction of pharmacologically important metabolites as analysed by UPLC-qTOF-MS and PCA. Evid Based Complement Alternat Med 2014:1–9. doi:10.1155/2014/914759

    Article  Google Scholar 

  • Kim OT, Bang KH, Shin YS et al (2007) Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Rep 26:1941–1949. doi:10.1007/s00299-007-0400-1

    Article  CAS  PubMed  Google Scholar 

  • Long HS, Stander MA, Van Wyk BE (2012) Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species. S Afr J Bot 82:53–59. doi:10.1016/j.sajb.2012.07.017

    Article  CAS  Google Scholar 

  • Madala NE, Tugizimana F, Steenkamp P (2014) Development and optimization of an UPLC-QTOF-MS/MS method based on an in-source collision-induced dissociation approach for comprehensive discrimination of chlorogenic acids isomers from Momordica plant species. J Anal Meth Chem 2014:1–7. doi:10.1155/2014/650879

    Article  Google Scholar 

  • Mahesh V, Million-Rousseau R, Ullmann P, Chabrillange N, Bustamante J, Mondolot L et al (2007) Functional characterization of two p-coumaroyl ester 3′-hydroxylase genes from coffee tree: evidence of a candidate for chlorogenic acid biosynthesis. Plant Mol Biol 64:145–159. doi:10.1007/s11103-007-9141-3

    Article  CAS  PubMed  Google Scholar 

  • Makita C, Chimuka L, Steenkamp PA, Cukrowska E, Madala NE (2016) Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. Sth Afr J Bot 105:116–122. doi:10.1016/j.sajb.2015.12.007

    Article  CAS  Google Scholar 

  • Marques V, Farah A (2009) Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem 113:1370–1376. doi:10.1016/j.foodchem.2008.08.086

    Article  CAS  Google Scholar 

  • Martucci MEP, De Vos RCH, Carollo CA, Gobbo-Neto L (2014) Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia schreb. PLoS ONE. doi:10.1371/journal.pone.0093149

    PubMed Central  PubMed  Google Scholar 

  • Maulidiani, Abas F, Khatib A, Shaari K, Lajis NH (2014) Chemical characterization and antioxidant activity of three medicinal Apiaceae species. Ind Crops Prod 55:238–247. doi:10.1016/j.indcrop.2014.02.013

    Article  CAS  Google Scholar 

  • Mhlongo MI, Piater LA, Steenkamp PA, Madala NE, Dubery IA (2014) Priming agents of plant defence stimulate the accumulation of mono- and di-acylated quinic acids in cultured tobacco cells. Physiol Molec Plant Pathol 88:61–66. doi:10.1016/j.pmpp.2014.09.002

    Article  CAS  Google Scholar 

  • Mimura MRM, Salatino A, Salatino MLF (2004) Distribution of flavonoids and the taxonomy of Huberia (Melastomataceae). Biochem Syst Ecol 32:27–34. doi:10.1016/j.bse.2003.08.001

    Article  CAS  Google Scholar 

  • Mohammadparast B, Rasouli M, Rustaiee AR, Zardari S, Agrawal V (2014) Quantification of asiatic acid from plant parts of Centella asiatica L. and enhancement of its synthesis through organic elicitors in in vitro. Hortic Environ Biotechnol 55:578–582. doi:10.1007/s13580-014-0168-5

    Article  CAS  Google Scholar 

  • Mozzetti C, Ferraris L, Tamietti G, Matta A (1995) Variation in enzyme activities in leaves and cell suspensions as markers of incompatibility in different Phytophthora-pepper interactions. Physiol Mol Plant Pathol 46:95–107 doi:10.1006/pmpp.1995.1008

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16. doi:10.1007/s11240-014-0467-7

    Article  CAS  Google Scholar 

  • Ncube EN, Mhlongo MI, Piater LA, Steenkamp PA, Dubery IA, Madala NE (2014) Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Cent J 8:1–10. doi:10.1186/s13065-014-0066-z

    Article  Google Scholar 

  • Ncube NE, Steenkamp PA, Madala NE, Dubery IA (2016a) Chlorogenic acids biosynthesis in Centella asiatica cells is not responsive to salicylic acid manipulation. Appl Biochem Biotechnol 179:685–696. doi:10.1007/s12010-016-2024-9

    Article  CAS  PubMed  Google Scholar 

  • Ncube NE, Steenkamp PA, Madala NE, Dubery IA (2016b) Stimulatory effects of acibenzolar-S-methyl on chlorogenic acids biosynthesis in Centella asiatica cells. Front Plant Sci 7:1469. doi:10.3389/fpls.2016.01469

    Article  PubMed Central  PubMed  Google Scholar 

  • Olthof M, Hollman P, Vree T, Katan M (2000) Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J Nutr 2:1200–1203

    Google Scholar 

  • Omar NS, Akmal Z, Zakaria C, Mian TS (2011) Centella asiatica modulates neuron cell survival by altering caspase-9 pathway. J Med Plants Res 5:2201–2209

    Google Scholar 

  • Oyedeji OA, Afolayan AJ (2005) Chemical composition and antibacterial activity of the essential oil of Centella asiatica growing in South Africa. Pharm Biol 43:249–252 doi:10.1080/13880200590928843

    Article  CAS  Google Scholar 

  • Prasad A, Singh M, Yadav NP, Mathur AK, Mathur A (2014) Molecular, chemical and biological stability of plants derived from artificial seeds of Centella asiatica (L.) Urban - An industrially important medicinal herb. Ind Crops Prod 60:205–211. doi:10.1016/j.indcrop.2014.06.022

    Article  CAS  Google Scholar 

  • Ramabulana T, Mavunda RD, Steenkamp PA, Piater LA, Dubery IA, Madala NE (2015) Secondary metabolite perturbations in Phaseolus vulgaris leaves due to gamma radiation. Plant Physiol Biochem 97:287–295. doi:10.1016/j.plaphy.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv 20:101–153. doi:10.1016/S0734-9750(02)00007-1

    Article  CAS  Google Scholar 

  • Randriamampionona D, Diallo B, Rakotoniriana F et al (2007) Comparative analysis of active constituents in Centella asiatica samples from Madagascar: Application for ex situ conservation and clonal propagation. Fitoterapia 78:482–489. doi:10.1016/j.fitote.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  • Raoseta O, Rodier-goud M, Rivallan R, Rabemanantsoa C, Cheuk K, Corbisier AM et al. (2013) Insight into the biology, genetics and evolution of the Centella asiatica polyploid complex in Madagascar. Ind Crop Prod 47:118–125. doi:10.1016/j.indcrop.2013.02.022

    Article  Google Scholar 

  • Satake T, Kamiya K, An Y, Oishi Nee Taka T, Yamamoto J (2007) The anti-thrombotic active constituents from Centella asiatica. Biol Pharm Bull 30:935–940. doi:10.1248/bpb.30.935

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403:136–138. doi:10.1016/j.ijpharm.2010.09.035

    Article  CAS  PubMed  Google Scholar 

  • Shukri MM, Alan C, Noorzuraini AS (2011) Polyphenols and antioxidant activities of selected traditional vegetables. J Trop Agric Food Sci 39:69–83

    Google Scholar 

  • Sivakumar G, Alagumanian S, Rao MV (2006) High frequency in vitro multiplication of Centella asiatica: an important industrial medicinal herb. Eng. Life Sci 6:597–601. doi:10.1002/elsc.200620159

    Article  CAS  Google Scholar 

  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA et al (2007) Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3:211–221. doi:10.1007/s11306-007-0082-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tohge T, Itagaki S, Kurokawa T, Ogura J, Kobayashi M (2013) The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 48:123–152. doi:10.3109/10409238.2012.758083

    Article  CAS  PubMed  Google Scholar 

  • Tugizimana F, Piater LA, Dubery IA (2013) Plant metabolomics: a new frontier in phytochemical analysis. S Afr J Sci 109:1–11. doi:10.1590/sajs.2013/20120005

    Article  Google Scholar 

  • Tugizimana F, Ncube EN, Steenkamp PA, Dubery IA (2015) Metabolomics-derived insights into the manipulation of terpenoid synthesis in Centella asiatica cells by methyl jasmonate. Plant Biotechnol Rep 9:125–136. doi:10.1007/s11816-015-0350-y

    Article  Google Scholar 

  • Wolfender J-L, Aurelien GM, Bertrand TS (2015) Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 1382:136–164. doi:10.1016/j.chroma.2014.10.091

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the South African National Research Foundation (grant number 95818 to ID) for financial support and the University of Johannesburg for a postgraduate research fellowship to EN.

Author contributions

IAD designed the study, ENN and PAS performed the experiments, ENN, NEM and IAD analysed the data, ENN and IAD wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Dubery.

Ethics declarations

Conflict of interest

The authors (EN, PS, NM and ID) declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2017_1189_MOESM1_ESM.pdf

Fig. S1. Representative UHPLC-MS base peak intensity (BPI) chromatograms obtained from ESI positive mode analysis of methanolic extracts of the C. asiatica leaf tissue (A), cells (B) and Gotu Kola capsules (C). Clear differences and presence/ absence of some peak intensities can be seen, indicating chemo-diversity of the different samples. Supplementary material 1 (PDF 135 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ncube, E.N., Steenkamp, P.A., Madala, N.E. et al. Metabolite profiling of the undifferentiated cultured cells and differentiated leaf tissues of Centella asiatica . Plant Cell Tiss Organ Cult 129, 431–443 (2017). https://doi.org/10.1007/s11240-017-1189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1189-4

Keywords

Navigation