Skip to main content
Log in

Overexpression of an alfalfa (Medicago sativa) gene, MsDUF, negatively impacted seed germination and response to osmotic stress in transgenic tobacco

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Many stress-responsive genes have been identified in alfalfa (Medicago sativa L.). The function of these genes, however, are mostly not understood. We reported previously a novel stress-responsive gene, MsDUF, from alfalfa that was up-regulated under drought stress. In the present study, we examined its function by overexpressing the gene in Nicotiana tabacum. We found that overexpression of MsDUF reduced seed vigor and germination percentage under normal conditions or osmotic stress. The reduced seed vigor and germination was associated with an increased ABA content in the overexpressor seeds. Further analysis revealed that overexpression of MsDUF resulted in up-regulation of transcript levels of ABA biosynthesis genes (ZEP, NCED1 and NCED6) in the seeds. Compared with wild type, MsDUF-overexpression seedlings displayed significantly lower chlorophyll content and reduced soluble sugar content under normal conditions. MDA content was significantly higher in MsDUF-overexpressors compared to wild type under ABA treatment, while soluble sugar content and peroxidase activities were significantly lower in MsDUF-overexpressors. Our results suggest that MsDUF may act as a negative regulator in controlling seed vigor and responses to osmotic stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

GA:

Gibberellic acid

GI:

Germination index

GP:

Germination percentage

SVI:

Seed vigor index

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real-time PCR

DUF:

Domains of unknown function

WT:

Wild type

OS:

Osmotic stress

References

  • Bourgeois G, Savoie P, Girard J-M (1990) Evaluation of an alfalfa growth simulation model under Quebec conditions. Agric Syst 32:1–12

    Article  Google Scholar 

  • Castroluna A, Ruiz O, Quiroga A, Pedranzani H (2014) Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L. Avances Invest Agropec 18:39–50

    Google Scholar 

  • Chen X, Zhang Z, Visser RG, Broekgaarden C, Vosman B (2013) Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana. PloS ONE 8:e70914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas JC et al (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreywood R (1946) Qualitative test for carbohydrate material. Ind Eng Chem Anal Ed 18:499

    Article  CAS  Google Scholar 

  • El-marouf-bouteau H et al (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant cell Environ 38:364–374

    Article  Google Scholar 

  • Finkelstein RR, Tenbarge KM, Shumway JE, Crouch ML (1985) Role of ABA in maturation of rapeseed embryos. Plant Physiol 78:630–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge L et al (2010) Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1 is required for polar auxin transport. Plant Cell 22:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Cheng H (2014) Isolation, molecular cloning and characterization of a cold-responsive gene, AmDUF1517., from Ammopiptanthus mongolicus. Plant Cell Tiss Organ Cult 117:201–211

    Article  CAS  Google Scholar 

  • Guo CM et al (2016) OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J Integr Plant Biol 58:492–502. https://doi.org/10.1111/jipb.12376

    Article  CAS  PubMed  Google Scholar 

  • Hamidi H, Safarnejad A (2010) Effect of drought stress on alfalfa cultivars (Medicago sativa L.) in germination stage. Am Eurasian J Agric Environ Sci 8:705–709

    Google Scholar 

  • Han B, Wang W, Yang P, Zhang P, Hu T (2013) Isolation and functional analysis of the stress resistance gene MsDUF in Medicago sativa L. Sci Agric Sin 2:021

    Google Scholar 

  • He X, Hou X, Shen Y, Huang Z (2011) TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. Febs Lett 585:1231–1237. https://doi.org/10.1016/j.febslet.2011.03.055

    Article  CAS  PubMed  Google Scholar 

  • Hoad G (1975) Effect of osmotic stress on abscisic acid levels in xylem sap of sunflower (Helianthus annuus L.). Planta 124:25–29

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Lee C, Chen Y (2012) Levels of endogenous abscisic acid and indole-3-acetic acid influence shoot organogenesis in callus cultures of rice subjected to osmotic stress. Plant Cell Tissue Organ Cult 108:257–263

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Jin H et al (2010) Screening of genes induced by salt stress from Alfalfa. Mol Biol Rep 37:745–753

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH et al (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Ryu M, Kim W (2012) Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases, AtRDUF1 and AtRDUF2, reduces tolerance to ABA-mediated drought stress. Biochem Biophys Res Commun 420:141–147. https://doi.org/10.1016/j.bbrc.2012.02.131

    Article  CAS  PubMed  Google Scholar 

  • King RW (1982) Abscisic acid in seed development. The physiology and biochemistry of seed development, dormancy and germination pp 157–181

  • Kondou Y et al (2013) Overexpression of DWARF AND LESION FORMATION 1 (DLE1) causes altered activation of plant defense system in Arabidopsis thaliana. Plant Biotechnol 30:385–392

    Article  CAS  Google Scholar 

  • Lehmann J, Atzorn R, Brückner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1995) Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156–162

    Article  CAS  Google Scholar 

  • Li L et al (2017) Molecular characterization and function analysis of the rice OsDUF946 family. Biotechnol Biotechnol Equip 31:477–485. https://doi.org/10.1080/13102818.2017.1289122

    Article  Google Scholar 

  • Lia L et al (2017) Molecular characterization, expression pattern and function analysis of the rice OsDUF866 family. Biotechnol Biotechnol Equip 31:243–249. https://doi.org/10.1080/13102818.2016.1268932

    Article  Google Scholar 

  • Luo Y, Liu Y, Dong Y, Gao X, Zhang X (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol 166:385–394

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Guo C, Wang W, Wang L, Chen L (2014) Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep 33:323–336. https://doi.org/10.1007/s00299-013-1532-0

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra SS, Wolfraim L, Poole RJ, Dhindsa RS (1989) Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol 89:375–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakashima K et al (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Park H-Y et al (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80–85

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee N, Kim W, Lim S, Choi G (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23:1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Harberd NP (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5:376–381

    Article  CAS  PubMed  Google Scholar 

  • Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79

    Article  CAS  PubMed  Google Scholar 

  • Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  PubMed  Google Scholar 

  • Sasaki K, Kim M-H, Kanno Y, Seo M, Kamiya Y, Imai R (2015) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 influences ABA accumulation in seed and negatively regulates germination. Biochem Biophys Res Commun 456:380–384

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P, Plachy C (1985) Control of seed germination by abscisic acid III. Effect on embryo growth potential (minimum turgor pressure) and growth coefficient (cell wall extensibility) in Brassica napus L. Plant Physiol 77:676–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Google Scholar 

  • Siriwardana CL, Kumimoto RW, Jones DS, Holt BF (2014) Gene family analysis of the Arabidopsis NF-YA transcription factors reveals opposing abscisic acid responses during seed germination. Plant Mol Biol Rep 32:971–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Villicaña C, Warner N, Arce-Montoya M, Rojas M, Angulo C, Orduño A, Gómez-Anduro G (2016) Antiporter NHX2 differentially induced in Mesembryanthemum crystallinum natural genetic variant under salt stress. Plant Cell Tiss Organ Cult 124:361–375

    Article  Google Scholar 

  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2016) MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco. Plant Cell Rep 35:439–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of National Natural Science Foundation of China (Grant Nos. 31572456, 31601987), the major Project for Tibetan forage industry (2016), and China Agriculture Research System (Grant No. CARS-35-40).

Author information

Authors and Affiliations

Authors

Contributions

YW and ZZ performed the whole experiment. YW and YW analyzed the data and wrote the manuscript. BH provided the transgenic tobacco seeds. HL, YA and LC participated in the gene expression, antioxidant enzyme and soluble sugar measurement. PY and TH proposed the ideas, designed the experiment, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tianming Hu or Peizhi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Yafang Wang and Zhiqiang Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1466 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Z., Liu, H. et al. Overexpression of an alfalfa (Medicago sativa) gene, MsDUF, negatively impacted seed germination and response to osmotic stress in transgenic tobacco. Plant Cell Tiss Organ Cult 132, 525–534 (2018). https://doi.org/10.1007/s11240-017-1348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1348-7

Keywords

Navigation