Skip to main content
Log in

Finite Element-Based Characterization of Pore-Scale Geometry and Its Impact on Fluid Flow

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We present a finite element (FEM) simulation method for pore geometry fluid flow. Within the pore space, we solve the single-phase Reynold’s lubrication equation—a simplified form of the incompressible Navier–Stokes equation yielding the velocity field in a two-step solution approach. (1) Laplace’s equation is solved with homogeneous boundary conditions and a right-hand source term, (2) pore pressure is computed, and the velocity field obtained for no slip conditions at the grain boundaries. From the computed velocity field, we estimate the effective permeability of porous media samples characterized by section micrographs or micro-CT scans. This two-step process is much simpler than solving the full Navier–Stokes equation and, therefore, provides the opportunity to study pore geometries with hundreds of thousands of pores in a computationally more cost effective manner than solving the full Navier–Stokes’ equation. Given the realistic laminar flow field, dispersion in the medium can also be estimated. Our numerical model is verified with an analytical solution and validated on two 2D micro-CT scans from samples, the permeabilities, and porosities of which were pre-determined in laboratory experiments. Comparisons were also made with published experimental, approximate, and exact permeability data. With the future aim to simulate multiphase flow within the pore space, we also compute the radii and derive capillary pressure from the Young–Laplace’s equation. This permits the determination of model parameters for the classical Brooks–Corey and van-Genuchten models, so that relative permeabilities can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

V :

Volume (m3)

F :

Right-hand term

N :

Interpolation function

R :

Pore radius (m)

P :

Pressure (Pa)

W :

Weighting function

K :

Permeability (m2)

a :

Pore diameter/channel width (m)

μ :

Fluid viscosity (Pa s)

ψ :

Parabolic function

θ :

Rock-fluid contact angle

σ :

Interfacial tension (N/m)

ρ :

Fluid density (kg/m3)

\({\phi}\) :

Porosity

λ :

Brooks–Corey parameter

γ :

van-Genuchten parameter

ω :

Domain boundary

\({\hat{n}}\) :

Unit normal to the boundary

ϵ:

van-Genuchten parameter

x, y:

Directions

a :

Pore diameter

nw:

Non-wetting

w:

Wetting

m :

Mean

e:

Effective

A, B, and C:

Relative permeability parameters

T:

Matrix transpose

e:

Element

References

  • Adler P.M., Jacquin C.G., Quiblier J.A.: Flow in simulated porous media. Int. J. Multiph. Flow 16(4), 691–712 (1990)

    Article  Google Scholar 

  • Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, New York (1967)

    Google Scholar 

  • Blunt M.J.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6, 197–207 (2001)

    Article  Google Scholar 

  • Brooks R.H., Corey A.T.: Hydraulic Properties of Porous Media. Hydrology Paper 3. Civil Engineering Department, University of Colorado, Boulder, CO (1964)

  • Burdine, N.T.: Relative permeability calculations from pore-size distribution data. Technical Report, Petroleum Transactions, AIME, pp. 71–78 (1953)

  • Collins R.E., Cooke C.E.: Fundamental basis for the contact angle and capillary pressure. Trans. Faraday Soc. 55, 1602–1606 (1959)

    Article  Google Scholar 

  • Dullien F.A.L.: Porous Media—Fluid Transport and Pore Structure. Academy Press, New York (1992)

    Google Scholar 

  • Dunsmuir J.H., Ferguson S.R., D’Amico K.L.: Design and operation of an imaging X-ray detector for microtomography. IOP Conf. Ser. 121, 257–267 (1991)

    Google Scholar 

  • Ferreol B., Rothman D.H.: Lattice-Boltzmann simulations of flow through Fontainebleau porous media. Transp. Porous Media 20(1–2), 3–20 (1995)

    Article  Google Scholar 

  • Grunau D., Chen S., Eggert K.: A Lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A 5(10), 2557–2562 (1993)

    Article  Google Scholar 

  • Guo Z., Zhao T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036–304 (2002)

    Google Scholar 

  • Happel J., Brenner H.: Low-Reynolds Number Hydrodynamics. Kluwer, Boston (1983)

    Google Scholar 

  • Helmig R.: Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, Berlin (1997)

    Google Scholar 

  • Honarpour M., Koederitz L., Harvey A.H.: Relative Permeability of Petroleum Reservoirs, 1st edn. CRC Press, Boca Raton, FL (1986)

    Google Scholar 

  • Huyakorn P.S., Pinder G.F.: Computational Methods in Subsurface Flow, pp. 25–53. Academic Press Inc., Orlando, FL (1983)

    Google Scholar 

  • Lee J.S.: Slow viscous flow in a lung alveoli model. Journal of Biomechanics 2, 187–198 (1969)

    Article  Google Scholar 

  • Matthai, S.K., Geiger, S., Roberts, S.G.: Complex Systems Modeling Platform (CSMP5.0). User’s Guide (2004)

  • Mualem Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976)

    Article  Google Scholar 

  • Nunez I.I.A., Canalejo M.C.C., Soto J.L.C., Cara E.F., Sanchez J.R.G., Beltran M.M.: Time and space parallelization of the Navier–Stokes equations. Comput. Appl. Math. 24(3), 417–438 (2005)

    Article  Google Scholar 

  • Okabe H., Blunt M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70, 066135 (2004)

    Article  Google Scholar 

  • Øren P.E., Bakke S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Øren P.E., Pinczewski W.V.: Fluid distribution and pore-scale displacement mechanisms in drainage dominated three-phase flow. Transp. Porous Media 20(1–2), 105–133 (1995)

    Article  Google Scholar 

  • Paluszny A., Matthai S.K., Hohmeyer M.: Hybrid finite element-finite volume discretization of complex geologic structures and a new simulation workflow demonstrated on fractured rocks. Geofluids 7(2), 186–208 (2007)

    Article  Google Scholar 

  • Pereira G.G., Pinczewski W.V., Chan D.Y.C., Paterson L., Øren P.E.: Pore-scale network model for drainage-dominated three-phase flow in porous media. Transp. Porous Media 24(2), 167–201 (1996)

    Article  Google Scholar 

  • Phillips O.M.: Flow and Reaction in Permeable Rocks. Cambridge University Press, Cambridge, UK (1991)

    Google Scholar 

  • Pozrikidis C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge, UK (1992)

    Google Scholar 

  • Reddy J.N., Gartling D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, pp. 149–185. CRC Press, USA (2001)

    Google Scholar 

  • Roberts A.P.: Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys. Rev. E 56(3), 3203–3212 (1997)

    Article  Google Scholar 

  • Sahimi M., Heiba A., Scriven L., Davis H.: Dispersion in flow through porous media-I. One phase flow. Chem. Eng. Sci. 41(8), 2103–2122 (1986)

    Article  Google Scholar 

  • Soll W.E., Celia M.A., Wilson J.L.: Micro-model studies of three fluid porous media systems: pore-scale processes relating to capillary pressure saturation relationships. Water Resour. Res. 29(9), 2963–2974 (1993)

    Article  Google Scholar 

  • Spanne P., Thovert J.F., Jacquin C.J., Lindquist W.B., Jones K.W., Adler P.M.: Synchrotron computed microtomography of porous media—topology and transports. Phys. Rev. Lett. 73(14), 2001–2004 (1994)

    Article  Google Scholar 

  • Talabi, O., Alsayari, S., Blunt, M.J., Dong, H., Zhao, X.: Predictive pore-scale modeling: from three-dimensional images to multiphase flow simulations. In: Proceedings of the Society of Petroleum Engineers, Denver, SPE 115535, 2008

  • Tsay R.Y., Wienbaum S.: Viscous flow in a channel with periodic cross-bridging fibers: exact solutions and Brinkman approximation. J. Fluid Mech. 226, 125–148 (1991)

    Article  Google Scholar 

  • Valvatne P.H., Blunt M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40, W07406 (2004). doi:10.1029/2003WR002627

    Article  Google Scholar 

  • van-Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Wildenschild D., Hopmans J.W., Rivers M.L., Kent A.J.R.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4, 112–126 (2005)

    Article  Google Scholar 

  • Yen M.R.T., Fung Y.C.: Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol. 35, 510–517 (1973)

    Google Scholar 

  • Zimmerman R.W., Bodvarsson G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23, 1–30 (1996)

    Article  Google Scholar 

  • Zimmerman, R.W., Kumar, S.: A fluid-mechanical model for blood flow in lung alveoli. HTD-Vol. 189/BED-Vol. 18, Advances in Biological Heat and Mass Transfer, ASME, 1991

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lateef T. Akanji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akanji, L.T., Matthai, S.K. Finite Element-Based Characterization of Pore-Scale Geometry and Its Impact on Fluid Flow. Transp Porous Med 81, 241–259 (2010). https://doi.org/10.1007/s11242-009-9400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9400-7

Keywords

Navigation