Skip to main content
Log in

Coupled Model of a Biological Fluid Filtration Through a Flat Layer with Due Account for Barodiffusion

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper describes the model of liquid flow in porous layer taking into account the finite compressibility and concentration expansion associated with both diffusion and the additional mechanism of the pressure change in the pore space volume. The equations for component fluxes are determined within the framework of thermodynamics of irreversible processes and include the phenomenon of component transfer under the action of a pressure gradient. This new transfer mechanism differs from the transfer by convective fluid flow. Thus, the model is fully coupled. As an example illustrating the role of barodiffusion and interaction of diffusion and filtration, the problem of fluid transport through a flat porous layer is considered. In limiting particular cases, the problem is reduced to known models, but in general case it has peculiarities which required detailed investigation. Firstly, dimensionless complexes including characteristic physical scales of different phenomena are identified. Secondly, an iterative algorithm for numerical solution of the formulated nonlinear problem was developed. Further the influence of taken into account effects on flow characteristics and concentration distribution is investigated numerically. It was found that in convective and diffusive flow modes, the influence of dimensionless complexes responsible for the interrelation of different phenomena is different. New qualitative regularities in the distribution of component concentrations and flow velocity are distinguished. It is found that barodiffusion has the most significant influence on the flow in the diffusion regime. Its role also increases with increase of compressibility of liquid. The detected effects can have an application to biological systems, for example, to the transfer of substances through membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Cross-sectional area per pore lumen

B :

Transfer coefficient under the stress action (similar to pressure diffusion coefficient)

C :

Concentration

C :

Concentrations of the components of the fluid

D:

Molecular diffusion coefficient (m2/s)

f :

Free Helmholtz energy

g k :

Chemical potentials

k :

Permeability of the porous medium (m2)

J :

Substance flow

J D :

Substance flux density

J V :

Convective transfer of the substance

L :

Area size (m)

m :

Porosity

M:

Molar mass of a dissolved component (kg/mole)

N A :

Avogadro's number (mole−1)

p :

Pressure (Pa)

\(\bar{p}\) :

Dimensionless pressure

Pe:

Peclet number

r :

Radius (m)

t :

Time (s)

u :

Dimensionless velocity

V i :

Molar volume (m3)

V :

Velocity (m/s)

W :

Filtration velocity (m/s)

x :

Coordinate (m)

α C :

Concentration expansion coefficient

β T :

Coefficient of isothermic compressibility of the fluid (Pa1)

\(\bar{\beta}_{{\rm T}}\) :

Dimensionless compressibility coefficient

\(\beta_{i}^{k}\) :

Thermodynamic factors

γ :

Specific volume

δ :

Relation of diffusion and filtration rates

μ :

Dynamic viscosity of fluid (Pa s)

ρ :

Density (kg/m3)

\(\bar{\rho}\) :

Dimensionless density

σ s :

Entropy (J/mole/K)

ξ :

Dimensionless spatial coordinate

ω :

Coupling coefficient (barodiffusion

References

  • Ali, I., Malik, N.A.: A realistic transport model with pressure-dependent parameters for gas flow in tight porous media with application to determining shale rock properties. Transp. Porous Med. 124, 723–742 (2018)

    Google Scholar 

  • Andrievsky, A.A.: Mechanics of Liquids and Gases. Higher School, Minsk (2014).. (in Russian)

    Google Scholar 

  • Balleza, D., Mescola, A., Alessandrini, A.: Model lipid systems and their use to evaluate the phase state of biomembranes, their mechanical properties and the effect of non-conventional antibiotics: the case of daptomycin. Eur. Biophys. J. 49, 401–408 (2020)

    Google Scholar 

  • Barenblatt, G.I., Entov, V.M., Ryzhik, V.M.: Theory of Non-stationary Filtration of Liquid and Gas. Nedra, Moscow (1972).. (in Russian)

    Google Scholar 

  • Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  • Baumgart, T., Capraro, B.R., Zhu, Ch., Das, S.L.: Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62, 483–506 (2011)

    Google Scholar 

  • Bear, J.: Modeling Phenomena of Flow and Transport in Porous Media. Springer, New York (2018)

    Google Scholar 

  • Battiato, I., Ferrero, P.T., V., O’Malley, D., Miller, C.T., Takhar, P.S., Valdés-Parada, F.J., Wood, B.D.: Theory and applications of macroscale models in porous media. Transp. Porous Media. 130, 5–76 (2019)

    Google Scholar 

  • Bretscher, M.S.: The molecules of the cell membrane. Sci. Am. 253(4), 86–90 (1985)

    Google Scholar 

  • Cai, Y.-H., Galili, N., Gelman, Y., Herzberg, M., Gilron, J.: Reuse of textile wastewater treated by moving bed biofilm reactor coupled with membrane bioreactor. Coloration technology. J. Membr. Sci. 623, 119054 (2021)

    Google Scholar 

  • Caro, C.G., Pedley, T.J., Schroter, R.C., Seed, W.A.: The Mechanics of the Circulation. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  • Chapelle, D., Moireau, P.: General coupling of porous flows and hyperelastic formulations—from thermodynamics principles to energy balance and compatible time schemes. Eur. J. Mech. B/fluids. 46, 82–96 (2014)

    Google Scholar 

  • Coussy, O.: Poromechanics. Wiley, Hoboken (2004)

    Google Scholar 

  • Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  • Dimitrienko, Y.I., Bogdanov, I.O.: Multi-scale modeling of filtration processes in porous media. Eng. J. Sci. Innov. 3(75), 1–16 (2018). (in Russian)

    Google Scholar 

  • Fogliatto, A.A.B., Ahrens, C.H., Wendhausen, P.A.P., Santos, E.C., Rodrigues, D.: Correlation between porosity and permeability of stainless steel filters with gradient porosity produced by SLS/SLM. Rapid Prototyp. J. 26(1), 73–81 (2018)

    Google Scholar 

  • Fukuda, M., Yoshimoto, H., Saomoto, H., Sakai, K.: Validity of three-dimensional tortuous pore structure and fouling of hemoconcentration capillary membrane using the tortuous pore diffusion model and scanning probe microscopy. Membranes 10, 315 (2020)

    Google Scholar 

  • Ge, D., Zou, L., Li, Ch., Liu, S., Li, Sh., Sun, S., Ding, W.: Simulation of the osmosis-based drug encapsulation in erythrocytes. Eur. Biophys. J. 47, 261–270 (2018)

    Google Scholar 

  • Gough, C.R., Callaway, K., Spencer, E., Leisy, K., Jiang, G., Yang, S., Hu, X.: Biopolymer-based filtration materials. ACS Omega 6(18), 11804–11812 (2021)

    Google Scholar 

  • Grein, T.A., Michalsky, R., Czermak, P.: Virus separation using membranes. Anim. Cell Biotechnol. 1104, 459–491 (2014)

    Google Scholar 

  • Hazewinkel, M. (ed.): Encyclopaedia of Mathematics, vol. 3. Springer, Berlin (2013)

    Google Scholar 

  • Hernández, D., Ramírez-Alatriste, F., Romo-Cruz, J.C.R., Olivares-Quiroz, L.: Hydrodynamic dispersion in heterogeneous anisotropic porous media: a simple model for anomalous diffusion emergence. Physica a. 508, 424–433 (2018)

    Google Scholar 

  • Ichikawa, Y., Selvadurai, A.P.S.: Transport Phenomena in Porous Media. Springer, Berlin (2012)

    Google Scholar 

  • Kahshan, M., Lu, D., Rahimi-Gorji, M., Do, H.-T.: A mathematical model of blood flow in a permeable channel: application toflat plate dialyzer. Phys. Scr. 95(4), 045202 (2020)

    Google Scholar 

  • Kang, Q., Wang, M., Mukherjee, P.P., Lichtner, P.C.: Mesoscopic modeling of multiphysicochemical transport phenomena in porous media. Adv. Mech. Eng. 11, 142879 (2010)

    Google Scholar 

  • Karal, M.A.S., Islam, Md.K., Mahbub, Z.B.: Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. Eur. Biophys. J. 49, 59–69 (2020)

    Google Scholar 

  • Khaled, A.-R.A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989–5003 (2003)

    Google Scholar 

  • Khasanov, M.M., Bulgakova, V.T.: Non-linear and Nonequilibrium Effects in Rheologically Complex Media. Institute of Computer Research, Moscow-Izhevsk (2003).. (in Russian)

    Google Scholar 

  • Kim, J.S., Kang, P.K.: Anomalous transport through free-flow-porous media interface: pore-scale simulation and predictive modeling. Adv. Water Resour. 135, 103467 (2020)

    Google Scholar 

  • Kikoin, A.K., Kikoin, I.K.: General Physics. Molecular Physics, 2nd edn, amended. Moscow (1976) (in Russian)

  • Kondepudy, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  • Kolesnichenko, A.V., Maksimov, V.M.: The generalized Darcy law of filtration as inquest of Stefan–Maxwell relations for heterogeneous medium. Matem. Mod. 13(1), 3–25 (2001)

    Google Scholar 

  • Knyazeva, A.G.: Pressure diffusion and chemical viscosity in the filtration models with state equation in differential form. IOP Conf. Ser. J. Phys. Conf. Ser. 1128, 012036 (2018). https://doi.org/10.1088/1742-6596/1128/1/012036

    Article  Google Scholar 

  • Knyazeva, A.G.: Introduction into Locally Equilibrium Thermodynamics of Physicochemical Transformations in Deformable Media. TSU Press, Tomsk (1997).. (in Russian)

    Google Scholar 

  • Knyazeva, A.G.: One-dimensional models of filtration with regard to thermal expansion and volume viscosity. In: Proceedings of the XXXVII Summer School–Conference “Advanced problems in mechanics” (APM 2009), St. Petersburg (Repino), June 30–July 5, pp. 330–337 (2009)

  • Knyazeva, A.G.: Thermodynamics with additional parameters for polycrystals. Int. J. Nanomech. Sci. Technol. 7(1), 1–25 (2016)

    Google Scholar 

  • Krishna, M.V., Swarnalathamma, B.V., Chamkha, A.J.: Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J. Ocean Eng. Sci. 4, 263–275 (2019)

    Google Scholar 

  • Kurilenko, O.D.: Brief Reference on Chemistry. Mir, Moscow (1982).. (in Russian)

    Google Scholar 

  • Li, B., Tchelepi, H.A.: Nonlinear analysis of multiphase transport in porous media inthepresence of viscous, buoyancy, and capillary forces. J. Comput. Phys. 297, 104–131 (2015)

    Google Scholar 

  • Lopatin, V.V., Belonenko, V.N., Zar, V.V., Askadsky, A.A.: Comparative study of mechanical behavior of synovial fluid of man and polyacrylamide hydrogels depending on pressure. Plastic Masses. 7, 43–46 (2004). (in Russian)

    Google Scholar 

  • Mahabaleshwar, U.S., Nagaraju, K.R., Vinay Kumar, P.N., Nadagouda, M.N., Bennacer, R., Sheremet, M.A.: Effects of Dufour and Soret mechanisms on MHD mixed convective-radiative non-Newtonian liquid flow and heat transfer over a porous sheet. Therm. Sci. Eng. Prog. 16, 100459 (2020)

    Google Scholar 

  • Maksimov, V.M.: Generalized law of multiphase filtration and new effects of surface phenomena at two-phase flows in a porous medium. Georesources. 21(1), 86–91 (2019)

    Google Scholar 

  • Medved, I., Cerny, R.: Surface diffusion in porous media: a critical review. Microporous Mesoporous Mater. 142, 405–422 (2011)

    Google Scholar 

  • Mirbagheri, M., Akbari, A., Hill, R.J.: A compact formula for the effective diffusivity of two-dimensional, anisotropic porous media with surface diffusion and interacting phases. Chem. Eng. Sci. 175, 416–423 (2018)

    Google Scholar 

  • Molins, S., Trebotich, D., Arora, B., Steefel, C.I., Deng, H.: Multi-scale model of reactive transport in fractured media: diffusion limitations on rates. Transp. Porous Med. 128, 701–721 (2019)

    Google Scholar 

  • Mujumdar, A.S. (ed.): Handbook of Industrial Drying, 3rd edn. Taylor & Francis Group, Boca Raton (2006)

    Google Scholar 

  • Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. International Human Resources Development Corp., Boston (1982)

    Google Scholar 

  • Nazarenko, N.N., Knyazeva, A.G., Komarova, E.G., Sedelnikova, M.B., Sharkeev, Y.P.: Relationship of the structure and the effective diffusion properties of porous zinc- and copper-containing calcium phosphate coatings. Inorg. Mater. Appl. Res. 9(3), 451–459 (2018)

    Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2013)

    Google Scholar 

  • Nguyen, D.M., Almeida, G., Nguyen, T.M.L., Zhang, J., Lu, P., Colin, J., Perré, P.: A critical review of current imaging techniques to investigate water transfers in wood and biosourced materials. Transp. Porous Media. 137, 21–61 (2021)

    Google Scholar 

  • Norouzi, M., Dorrani, S., Shokri, H., Anwar Bég, O.: Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media. Int. J. Heat Mass Transf. 129, 212–223 (2019)

    Google Scholar 

  • Pedley, T.J.: The Fluid Mechanics of Large Blood Vessels Cambridge Mono-Graphs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  • Prigogine, I., Defay, R.: Chemical Thermodynamics. Longuan, London (1967)

    Google Scholar 

  • Putranto, A., Chen, X.D., Devahastin, S., Xiao, Z., Web, P.A.: Application of the reaction engineering approach (REA) for modeling intermittent drying under time-varying humidity and temperature. Chem. Eng. Sci. 66(10), 2149–2156 (2011)

    Google Scholar 

  • Rahbari, A., Fakour, M., Hamzehnezhad, A., Vakilabadi, M.A., Ganji, D.D.: Heat transfer and fluid flow of blood with nanoparticles through porous vessels in a magnetic field: a quasi-one dimensional analytical approach. Math. Biosci. 283, 38–47 (2017)

    Google Scholar 

  • Remuzzi, A., Brenner, B.M., Pata, V., Tebaldi, G., Mariano, R., Belloro, A., Remuzzi, G.: Three-dimensional reconstructed glomerular capillary network: blood flow distribution and local filtration. Am. J. Physiol Ren Physiol. 263(3), 562–572 (1992). https://doi.org/10.1152/ajprenal.1992.263.3.f562

  • Royer, P.: Advection–diffusion in porous media with low scale separation: modelling via higher-order asymptotic homogenisation. Transp. Porous Med. 128, 511–551 (2019)

    Google Scholar 

  • Rusinque, H., Brenner, G.: Mass transport in porous media at the micro- and nanoscale: a novel method to model hindered diffusion. Microporous Mesoporous Mater. 280, 157–165 (2019)

    Google Scholar 

  • Salama, A., Abbas, I.A., El-Amin, M.F., Sun, S.: Comparison study between the effects of different terms contributing to viscous dissipation in saturated porous media. Int. J. Therm. Sci. 64, 195–203 (2013)

    Google Scholar 

  • Samarskij, A.A., Nikolaev, E.S.: Numerical methods for grid equations. Birkhauser Verlag Basel, Berlin (1989)

  • Sanyal, D.C., Maji, N.K.: Thermoregulation through skinunder variable atmospheric and physiological conditions. J. Theor. Biol. 208, 451–456 (2001)

    Google Scholar 

  • Shabrykina, N.S.: Mathematical modeling of microcirculation processes. Russ. Biochem. J. 9(3), 70–88 (2005). (in Russian)

    Google Scholar 

  • Sherar, M.D., Gladman, A.S., Davidson, S.R.H., Trachtenberg, J., Gertner, M.R.: Helical antenna arrays for inter-stitial microwave thermal therapy for prostate cancer: tissue phantom testing and simulations for treatment. Phys. Med. Biol. 46, 1905–1918 (2001)

    Google Scholar 

  • Schick, A.J., Yi, L., Lam, P., Pallante, P., Swanson, N., Tyler, J.Y.: Understanding loss of soluble high molecular weight species during filtration of low concentration therapeutic monoclonal antibodies. J. Pharm. Sci. 110(5), 1997–2004 (2021)

    Google Scholar 

  • Shirataki, H., Yokoyama, Y., Oguri, R.: Effect of mixed-mode and surface-modified column chromatography on virus filtration performance. Biochem. Eng. J. 172, 108034 (2021)

    Google Scholar 

  • Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251, 310–340 (2000)

    Google Scholar 

  • Sofronov, I.D.: A double sweep method for the solution of difference boundary value problems. USSR Comput. Math. Math. Phys. 4(2), 62–76 (1964)

    Google Scholar 

  • Svirina, A., Terterov, I.: Electrostatic effects in saturation of membrane binding of cationic cell-penetrating peptide. Eur. Biophys. J. 50, 15–23 (2021)

    Google Scholar 

  • Suleymanov, B.A.: Peculiarities infiltration of heterogeneous systems. Institute of computer research, M.-Izhevsk (2006).. (in Russian)

    Google Scholar 

  • Szymkiewicz, A.: Modelling Water Flow in Unsaturated Porous Media. Accounting for Nonlinear Permeability and Material Heterogeneity. Springer, Heidelberg (2013)

    Google Scholar 

  • Tovbin, Yu.K.: The Molecular Theory of Adsorption in Porous Solids. CRC Press, Engels (2017)

    Google Scholar 

  • Vafai, K.: Handbook of Porous Media, 2nd edn. Taylor & Francis Group, London (2005)

    Google Scholar 

  • Vafai, K.: Handbook of Porous Media. CRC Press, Boca Raton (2015)

    Google Scholar 

  • Vu, H.T., Tsotsas, E.: Mass and heat transport models for analysis of the drying process in porous media: a review and numerical implementation. Int. J. Chem. Eng. 2, 1–13 (2018)

    Google Scholar 

  • Wang, K., Li, P.: Forced convection in bidisperse porous media incorporating viscous dissipation. Appl. Therm. Eng. 140, 86–94 (2018)

    Google Scholar 

  • Weismuller, J., Wollschlager, U., Boike, J., Roth, K.: Modeling the thermal dynamics of the active layer at two contrasting permafrost sites. Cryosphere Discuss. 5, 229–270 (2011)

    Google Scholar 

  • Yao, J., Song, W., Wang, D., Sun, H., Li, Y.: Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media. Int. J. Heat Mass Transf. 141, 156–167 (2019)

    Google Scholar 

  • Yang, X., Liang, Y., Chen, W.: Anomalous imbibition of non-Newtonian fluids in porous media. Chem. Eng. Sci. 211, 115265 (2020)

    Google Scholar 

  • Yang, Q., Huang, H., Li, K., Wang, Y., Wang, J., Zhang, X.: Ibuprofen removal from drinking water by electro-peroxone in carbon cloth filter. Chem. Eng. J. 415(1), 127618 (2021)

    Google Scholar 

Download references

Acknowledgements

The work was performed according to the Government research assignment for ISPMS SB RAS, project FWRW-2021-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Nazarenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We describe below the solution algorithm for the following equation system

$$\begin{aligned} & \delta \frac{{{\text{d}}^{2} C}}{{{\text{d}}\xi^{2} }} - Y\frac{{{\text{d}}C}}{{{\text{d}}\xi }} + gC = 0, \\ & \frac{{{\text{d}}^{2} \overline{p}}}{{{\text{d}}\xi^{2} }} - Z\frac{{{\text{d}}\overline{p}}}{{{\text{d}}\xi }} = 0, \\ \end{aligned}$$

where the notation is entered

$$\begin{aligned} & Y = \omega \left( {1 + \alpha_{\rm C} C} \right)\left( {\frac{{{\text{d}}\overline{p}}}{{{\text{d}}\xi }}} \right)^{2} + \alpha_{\rm C} \delta \frac{{{\text{d}}C}}{{{\text{d}}\xi }} - \frac{{{\text{d}}\overline{p}}}{{{\text{d}}\xi }}\left( {\overline{\beta }_{\rm T} \delta + 1} \right) = Y\left( {C,u} \right), \\ & g = \omega \overline{\beta }_{\rm T} \left( {\frac{{{\text{d}}\overline{p}}}{{{\text{d}}\xi }}} \right)^{3} = g\left( u \right), \\ & Z = \alpha_{\rm C} \frac{{{\text{d}}C}}{{{\text{d}}\xi }} - \overline{\beta }_{\rm T} \frac{{{\text{d}}\overline{p}}}{{{\text{d}}\xi }} = Z\left( {\frac{{{\text{d}}C}}{{{\text{d}}\xi }},u} \right). \\ \end{aligned}$$

For an arbitrary point i of the difference grid, we have Taylor expansions in small integration step to the right and to the left of this point:

$$\begin{aligned} & C_{i + 1} = C_{i} + \left( {\frac{{{\text{d}}C_{i} }}{{{\text{d}}\xi }}} \right)h + \left( {\frac{{{\text{d}}^{2} C_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{{h^{2} }}{2} + \cdots , \\ & C_{i - 1} = C_{i} - \left( {\frac{{{\text{d}}C_{i} }}{{{\text{d}}\xi }}} \right)h + \left( {\frac{{{\text{d}}^{2} C_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{{h^{2} }}{2} + \cdots . \\ \end{aligned}$$

Expressing \(\left( {\frac{{{\text{d}}C_{i} }}{{{\text{d}}\xi }}} \right)\) to the right and to the left of point i

$$\left( {\frac{{{\text{d}}C_{i} }}{{{\text{d}}\xi }}} \right)_{{{\text{right}}}} = \frac{{C_{i + 1} - C_{i} }}{h} - \left( {\frac{{{\text{d}}^{2} C_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}\quad {\text{and}}\quad \left( {\frac{{{\text{d}}C_{i} }}{{{\text{d}}\xi }}} \right)_{{{\text{left}}}} = \frac{{C_{i} - C_{i - 1} }}{h} + \left( {\frac{{{\text{d}}^{2} C_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}$$

and then substituting it into (45) we obtain

$$\begin{aligned} & \delta \frac{{{\text{d}}^{2} C}}{{{\text{d}}\xi^{2} }} - \frac{{Y_{i} + \left| {Y_{i} } \right|}}{2}\left( {\frac{{{\text{d}}C_{i} }}{{{\text{d}}\xi }}} \right)_{left} - \frac{{Y_{i} - \left| {Y_{i} } \right|}}{2}\left( {\frac{{{\text{d}}C_{i} }}{{{\text{d}}\xi }}} \right)_{right} + gC_{i} = 0\quad {\text{or}} \\ & \delta \frac{{{\text{d}}^{2} C}}{{{\text{d}}\xi^{2} }} - \frac{{Y_{i} + \left| {Y_{i} } \right|}}{2}\left( {\frac{{C_{i} - C_{i - 1} }}{h} + \left( {\frac{{{\text{d}}^{2} C_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}} \right) - \frac{{Y_{i} - \left| {Y_{i} } \right|}}{2}\left( {\frac{{C_{i + 1} - C_{i} }}{h} - \left( {\frac{{{\text{d}}^{2} C_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}} \right) + gC_{i} = 0. \\ \end{aligned}$$

Hence, Eq. (45) appears in the form:

$$\delta \frac{{{\text{d}}^{2} C}}{{{\text{d}}\xi^{2} }}\left[ {1 - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right] - \frac{{Y_{i} + \left| {Y_{i} } \right|}}{2}\frac{{C_{i} - C_{i - 1} }}{h} - \frac{{Y_{i} - \left| {Y_{i} } \right|}}{2}\frac{{C_{i + 1} - C_{i} }}{h} + g_{i} C_{i} = 0$$

Since h ≪ 1, \(\left( {1 - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right) \approx \exp \left[ { - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right]\), and the last equation can be rewritten as follow:

$$\begin{aligned} & C_{i + 1} \left[ {\exp \left[ { - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right]\frac{\delta }{{h^{2} }} - \frac{{Y_{i} - \left| {Y_{i} } \right|}}{2h}} \right] - C_{i} \left[ {2\exp \left[ { - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right]\frac{\delta }{{h^{2} }} + \frac{{\left| {Y_{i} } \right|}}{h}} \right] \\ & \quad + C_{i - 1} \left[ {\exp \left[ { - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right]\frac{\delta }{{h^{2} }} + \frac{{Y_{i} + \left| {Y_{i} } \right|}}{2h}} \right] + g_{i} C_{i} = 0. \\ \end{aligned}$$

As a result, we get

$$a_{i} C_{i + 1} - d_{i} C_{i} + b_{i} C_{i - 1} + f_{i} = 0,$$

where

$$\begin{aligned} & a_{i} = \exp \left[ { - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right]\frac{\delta }{{h^{2} }} - \frac{{Y_{i} - \left| {Y_{i} } \right|}}{2h}, \\ & b_{i} = \exp \left[ { - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right]\frac{\delta }{{h^{2} }} + \frac{{Y_{i} + \left| {Y_{i} } \right|}}{2h}, \\ & d_{i} = 2\exp \left[ { - \frac{h}{2\delta }\left| {Y_{i} } \right|} \right]\frac{\delta }{{h^{2} }} + \frac{{\left| {Y_{i} } \right|}}{h},\quad f_{i} = C_{i} g_{i} , \\ \end{aligned}$$

which can be solved by the double-sweep method. A double-sweep method for particular cases of such systems (n = 1, 2) has been widely discussed in the literature (Hazewinkel 2013; Samarskij and Nikolaev 1989) All the values included into the coefficients follow from the previous iteration; the coefficients satisfy the following condition

$$\left| {a_{i} + b_{i} } \right| \le d_{i} ,$$

i.e. for every iteration, the sweep will be stable.

Similarly to the previous, we have

$$\begin{aligned} & \overline{p}_{i + 1} = \overline{p}_{i} + \left( {\frac{{{\text{d}}\overline{p}_{i} }}{{{\text{d}}\xi }}} \right)h + \left( {\frac{{{\text{d}}^{2} \overline{p}_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{{h^{2} }}{2} + \cdots , \\ & \overline{p}_{i - 1} = \overline{p}_{i} - \left( {\frac{{{\text{d}}\overline{p}_{i} }}{{{\text{d}}\xi }}} \right)h + \left( {\frac{{{\text{d}}^{2} \overline{p}_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{{h^{2} }}{2} + \cdots . \\ \end{aligned}$$

From here, we express \(\left( {\frac{{{\text{d}}\overline{p}_{i} }}{{{\text{d}}\xi }}} \right)\) to the right and to the left of point i:

$$\left( {\frac{{{\text{d}}\overline{p}_{i} }}{{{\text{d}}\xi }}} \right)_{{{\text{right}}}} = \frac{{\overline{p}_{i + 1} - \overline{p}_{i} }}{h} - \left( {\frac{{{\text{d}}^{2} \overline{p}_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}\quad {\text{and}}\quad \left( {\frac{{{\text{d}}\overline{p}_{i} }}{{{\text{d}}\xi }}} \right)_{{{\text{left}}}} = \frac{{\overline{p}_{i} - \overline{p}_{i - 1} }}{h} + \left( {\frac{{{\text{d}}^{2} \overline{p}_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}.$$

Therefore,

$$\frac{{{\text{d}}^{2} \overline{p}}}{{{\text{d}}\xi^{2} }} - \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i} - \overline{p}_{i - 1} }}{h} + \left( {\frac{{{\text{d}}^{2} \overline{p}_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}} \right) - \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i + 1} - \overline{p}_{i} }}{h} - \left( {\frac{{{\text{d}}^{2} \overline{p}_{i} }}{{{\text{d}}\xi^{2} }}} \right)\frac{h}{2}} \right) = 0$$

or

$$\frac{{{\text{d}}^{2} \overline{p}}}{{{\text{d}}\xi^{2} }}\left[ {1 - \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2}\frac{h}{2} + \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2}\frac{h}{2}} \right] - \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i} - \overline{p}_{i - 1} }}{h}} \right) - \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i + 1} - \overline{p}_{i} }}{h}} \right) = 0$$

or

$$\frac{{{\text{d}}^{2} \overline{p}}}{{{\text{d}}\xi^{2} }}\left[ {1 - \frac{{\left| {Z_{i} } \right|}}{2}h} \right] - \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i} - \overline{p}_{i - 1} }}{h}} \right) - \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i + 1} - \overline{p}_{i} }}{h}} \right) = 0.$$

For small steps of the difference grid we have

$$\frac{{{\text{d}}^{2} \overline{p}}}{{{\text{d}}\xi^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) - \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i} - \overline{p}_{i - 1} }}{h}} \right) - \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i + 1} - \overline{p}_{i} }}{h}} \right) = 0$$

or

$$\frac{{\overline{p}_{i + 1} - 2\overline{p}_{i} + \overline{p}_{i - 1} }}{{h^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) - \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i} - \overline{p}_{i - 1} }}{h}} \right) - \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2}\left( {\frac{{\overline{p}_{i + 1} - \overline{p}_{i} }}{h}} \right) = 0$$

or

$$\overline{p}_{i + 1} \left[ {\frac{1}{{h^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) - \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2h}} \right] - \overline{p}_{i} \left[ {\frac{2}{{h^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) + \frac{{\left| {Z_{i} } \right|}}{h}} \right] + \overline{p}_{i - 1} \left[ {\frac{1}{{h^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) + \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2h}} \right] = 0.$$

As a result, we get

$$a_{i} p_{i + 1} - d_{i} p_{i} + b_{i} p_{i - 1} + f_{i} = 0,$$

where

$$\begin{aligned} & a_{i} = \frac{1}{{h^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) - \frac{{Z_{i} - \left| {Z_{i} } \right|}}{2h}, \\ & b_{i} = \frac{1}{{h^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) + \frac{{Z_{i} + \left| {Z_{i} } \right|}}{2h}, \\ & d_{i} = \frac{2}{{h^{2} }}\exp \left( { - \frac{{\left| {Z_{i} } \right|}}{2}h} \right) + \frac{{\left| {Z_{i} } \right|}}{h},\quad f_{i} = 0. \\ \end{aligned}$$

Table 2 presents final velocities and concentrations in chosen points after increasing the amount of divisions of the calculation domain (when decreasing the spatial step), obtained after solving set (41)–(43) by the method of simple iteration. Here, we see a good convergence even for the number of points n = 200. The calculations presented in Table below were performed at the following fixed parameters: \(\alpha_{\rm C} = 0.57\); \(\overline{p}_{2} = 0.7\); \(\overline{\beta }_{\rm T} = 0.01\); \(\delta = 0.05\); \(\omega = 0.3\). The values of the parameters \(\alpha_{\rm C}\) and \(\overline{\beta }_{\rm T}\) were estimated for biological fluids such as saline and blood. For other biological fluids, the parameter \(\overline{\beta }_{\rm T}\) will differ slightly, and the value of parameter \(\alpha_{\rm C}\) depends on the size of the atoms in the liquid phase.

Table

Table 3 Example of convergence of iterations, n = 200

3 shows subsequent approximations for velocity and concentration for the partitions number n = 200 illustrating the convergence of the solution. Table data means that the result after 5–6 iterations can be regarded satisfactory.

The similar convergence check was made in different variation ranges of the model parameters and with different specified accuracy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, A.G., Nazarenko, N.N. Coupled Model of a Biological Fluid Filtration Through a Flat Layer with Due Account for Barodiffusion. Transp Porous Med 141, 331–358 (2022). https://doi.org/10.1007/s11242-021-01720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01720-0

Keywords

Navigation