Skip to main content
Log in

Glycerin and [Iron(III)(salen)]Cl as an efficient catalytic medium for multicomponent reactions

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In this investigation, glycerol and [Fe(III)(salen)]Cl as a green catalyst system were used in multicomponent reactions for the synthesis of bis(indolyl)methanes, 3,4-dihydropyrimidinones, and 1,4-dihydropyridines, respectively. Excellent product yields and short reaction times were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Lenardão EJ, Trecha DO, Ferreira PC, Jacob RG, Perin G (2009) Green michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions. J Braz Chem Soc 20:93–99

    Article  Google Scholar 

  2. Garson MJ (1993) The biosynthesis of marine natural products. Chem Rev 93:1699–1733

    Article  CAS  Google Scholar 

  3. Katsuki T (1995) Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord Chem Rev 140:189–214

    Article  CAS  Google Scholar 

  4. Summers MF, Marzilli LG, Bresciani-Pahor N, Randaccio L (1984) Unusual bond lengths, conformations, and ligand exchange rates in B12 models with the bis(salicylidene)-o-phenylenediamine equatorial ligand. J Am Chem Soc 106:4478–4485

    Article  CAS  Google Scholar 

  5. Lacroix PG (2001) Second-order optical nonlinearities in coordination chemistry: the case of bis(salicylaldiminato)metal schiff base complexes. Eur J Inorg Chem 2:339–348

    Article  Google Scholar 

  6. Costes JP, Dahan F, Dupuis A (2000) Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX3·nH2O complexes (LH2 standing for tetradentate schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). Inorg Chem 39:165–168

    Article  CAS  Google Scholar 

  7. Bao B, Sun Q, Yao X, Hong J, Lee CO, Sim CJ, Im KS, Jung JH (2005) Cytotoxic bisindole alkaloids from a marine sponge spongosorites sp. J Nat Prod 68:711–715

    Article  CAS  Google Scholar 

  8. Perumal PT, Nagarajan R (2002) InCl3 and In(OTf)3 catalyzed reactions: synthesis of 3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives. Tetrahedron 58:1229–1232

    Article  Google Scholar 

  9. Deb ML, Bhuyan PJ (2008) An efficient method for the synthesis of indolo[3,2-b]carbazoles from 3,3′-bis(indolyl)methanes catalyzed by molecular iodine. Synlett 3:325–328

    Google Scholar 

  10. Stout DM, Meyers AI (1982) Recent advances in the chemistry of dihydropyridines. Chem Rev 82:223–243

    Article  CAS  Google Scholar 

  11. Gaudio AC, Korolkovas A, Takahata Y (1994) Quantitative structure-activity relationships for 1,4-dihydropyridine calcium channel antagonists (nifedipine analogues): a quantum chemical/classical approach. J Pharm Sci 83:1110–1115

    Article  CAS  Google Scholar 

  12. Love B, Snader KM (1965) The hantzsch reaction. I. Oxidative dealkylation of certain dihydropyridines. J Org Chem 30:1914–1916

    Article  Google Scholar 

  13. Sausins A, Duburs G (1988) Synthesis of 1,4-dihydropyridines by cyclocondensation reactions. Heterocycles 27:269–289

    Article  CAS  Google Scholar 

  14. Kappe CO (2000) Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc Chem Res 33:879–888

    Article  CAS  Google Scholar 

  15. Kappe CO (1993) 100 Years of the biginelli dihydropyrimidine synthesis. Tetrahedron 49:6937–6963

    Article  CAS  Google Scholar 

  16. Lu J, Ma H (2000) Iron(III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the biginelli reaction. Synlett 1:63–64

    Google Scholar 

  17. Paraskar AS, Dewker GK, Sudalai A (2003) Cu(OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett 44:3305–3308

    Article  CAS  Google Scholar 

  18. Yu Y, Liu D, Liu C, Luo G (2007) One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst. Bioorg Med Chem Lett 17:3508–3510

    Article  CAS  Google Scholar 

  19. Salomão GC, Olsen MHN, Drago V, Fernandes C, Filho LC, Antones OAC (2007) Oxidation of cyclohexane promoted by [Fe(III)(Salen)Cl] and [Mn(III)(Salen)Cl]. Catal Commun 8:69–72

    Article  Google Scholar 

  20. Deb ML, Bhuyan PJ (2006) An efficient and clean synthesis of bis(indolyl)methanes in a protic solvent at room temperature. Tetrahedron Lett 47:1441–1443

    Article  CAS  Google Scholar 

  21. Sadaphal SA, Shelke KF, Sonar SS, Shingare MS (2008) Ionic liquid promoted synthesis of bis(indolyl) methanes. Cent Eur J Chem 6:622–626

    Article  CAS  Google Scholar 

  22. Hasaninejad A, Zare A, Sharghi H, Niknam K, Shekouhya M (2007) P2O5/SiO2 as an efficient, mild, and heterogeneous catalytic system for the condensation of indoles with carbonyl compounds under solvent-free conditions. ARKIVOC xiv:39–50

  23. Shaabani A, Bazgir A, Teimuri F (2003) Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Tetrahedron Lett 44:857–859

    Article  CAS  Google Scholar 

  24. Shirini F, Marjani K, Taherpour Nahzomi H (2007) Silica triflate as an efficient catalyst for the solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones. ARKIVOC i:51–57

  25. Shaabani A, Rezayan AH, Rahmati A, Sharifi M (2006) Ultrasound-accelerated synthesis of 1,4-Dihydropyridines in an Ionic Liquid. Monatsh Chem 137:77–81

    Article  CAS  Google Scholar 

  26. Heydari A, Khaksar S, Tajbakhsh M, Bijanzadeh HR (2009) One-step, synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. J Fluorine Chem 130:609–614

    Article  CAS  Google Scholar 

  27. Yadav JS, Subba Reddy BV, Reddy PT (2001) Unprecedented synthesis of hantzsch 1,4-dihydropyridines under biginelli reaction conditions. Synth Commun 31:425–430

    Article  CAS  Google Scholar 

  28. Firouzabadi H, Iranpoor N, Jafarpour M, Ghaderi A (2006) ZrOCl2·8H2O/silica gel as a new efficient and a highly water–tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. J Mol Catal A Chem 253:249–251

    Article  CAS  Google Scholar 

  29. Srinivasa A, Varma PP, Hulikal V, Mahadevan KM (2008) Antimony(III) sulfate catalyzed condensation reaction of indoles with carbonyl compounds. Monatsh Chem 139:111–115

    Article  CAS  Google Scholar 

  30. Nandurkar NS, Bhanushali MJ, Bhor MD, Bhanage BM (2007) Y(NO3)3·6H2O: a novel and reusable catalyst for one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. J Mol Catal A Chem 271:14–17

    Article  CAS  Google Scholar 

  31. Debache A, Ghalem W, Boulcina R, Belfaitah A, Rhouati S, Carboni B (2009) An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett 50:5248–5250

    Article  CAS  Google Scholar 

  32. Adibi H, Samimi HA, Beygzadeh M (2007) Iron(III) trifluoroacetate and trifluoromethanesulfonate: recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catal Commun 8:2119–2124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the financial support from the Research Council of University of Jiroft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Seyedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyedi, N. Glycerin and [Iron(III)(salen)]Cl as an efficient catalytic medium for multicomponent reactions. Transition Met Chem 38, 93–103 (2013). https://doi.org/10.1007/s11243-012-9665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9665-5

Keywords

Navigation