Skip to main content
Log in

Ruthenium(II)-catalyzed synthesis of 2-arylbenzimidazole and 2-arylbenzothiazole in water

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Benzimidazoles/benzothiazoles are heterocyclic compounds which contain a five membered heteroatom and a benzene ring. They constitute a crucial structural unit of numerous bioactive compounds and natural products. Since the compounds containing benzimidazole/benzothiazole core and their derivatives possess interesting biological activity, steady efforts are being made on the development of an improved synthetic methodology for the synthesis of these biologically important class of compounds. Inspired by their biological properties, synthesis of 2-arylbenzimidazoles and 2-aryl benzothiazoles has been attempted using N^O chelate ruthenium(II)-catalyst in water. A series of 2-arylbenzimidazoles and 2-arylbenzothiazoles including a few new derivatives have been prepared by the reaction of ortho-phenylenediamine or ortho-aminothiophenol with aromatic aldehydes in the presence of 5 mol% of ruthenium(II)-catalyst under nitrogen without the use of additive in water. This reaction was extended to various heteroaromatic aldehydes obtaining up to 88% yield of the desired 2-arylbenzimidazoles/2-arylbenzothiazoles. In a few cases, a small amount of diarylated compounds was formed depending on the aldehydes used. Additionally, antibiotic properties of the synthesized compounds have been screened using the standard disc diffusion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  1. Noël S, Cadet S, Gras E, Hureau C (2013) Chem Soc Rev 42:7747–7762

    PubMed  Google Scholar 

  2. Mann J, Baron A, Opoku-Boahen Y, Johansson E, Parkinson G, Kelland LR, Neidle S (2001) J Med Chem 44:138–144

    CAS  PubMed  Google Scholar 

  3. Galal SA, Abdelsamie AS, Rodriguez ML, Kerwin SM, El Diwani HI (2010) Eur J Chem 2:67–72

    Google Scholar 

  4. Omar MA, Shaker YM, Galal SA, Ali MM, Kerwin SM, Li J, Tokuda H, Ramadan RA, El Diwani HI (2012) Bioorg Med Chem 20:6989–7001

    CAS  PubMed  Google Scholar 

  5. Kumar BVS, Vaidya SD, Kumar RV, Bhirud SB, Mane RB (2006) Eur J Med Chem 41:599–604

    CAS  PubMed  Google Scholar 

  6. Vinodkumar R, Vaidya SD, Kumar BVS, Bhise UN, Bhirud SB, Mashelkar UC (2008) Arkivoc 2008:37–49

    Google Scholar 

  7. Tonelli M, Simone M, Tasso B, Novelli F, Boido V, Sparatore F, Paglietti G, Pricl S, Giliberti G, Blois S (2010) Bioorg Med Chem 18:2937–2953

    CAS  PubMed  Google Scholar 

  8. Goker H, Kus C, Boykin DW, Yildiz S, Altanlar N (2002) Bioorg Med Chem 10:2589–2596

    CAS  PubMed  Google Scholar 

  9. Sharma D, Narasimhan B, Kumar P, Judge V, Narang R, Clercq ED, Balzarini J (2009) J Enzym Inhib Med Chem 24:1161–1168

    CAS  Google Scholar 

  10. Tolner B, Hartley JA, Hochhauser D (2001) Mol Pharmacol 59:699–706

    CAS  PubMed  Google Scholar 

  11. Britten CD, Delioukina M, Boulos L, Reiswig L, Gicanov N, Rizzo J, Hao D, Tolcher A, Weitman S, Rugg T, Von Hoff D, Camden J, Rosen LS (2001) Proc Am Soc Clin Oncol 20:2129–2136

    Google Scholar 

  12. Duanmu C, Shahrik LK, Holly HH, Hamel E (1989) Cancer Res 49:134–138

    Google Scholar 

  13. Wright AE, Chiles SA, Cross SS (1991) J Nat Prod 54:1684–1686

    CAS  Google Scholar 

  14. Panda SS, Malik R, Jain SC (2012) Curr Org Chem 16:1905–1919

    CAS  Google Scholar 

  15. Sun Z, Bottari G, Barta K (2015) Green Chem 17:5172–5181

    CAS  Google Scholar 

  16. Alaqeel SI (2017) J Saudi Chem Soc 21:229–237

    CAS  Google Scholar 

  17. Kovvuri J, Nagaraju B, Kamal A, Srivastava AK (2016) ACS Comb Sci 18:644–650

    CAS  PubMed  Google Scholar 

  18. Bahrami K, Khodaei MM, Nejati A (2010) Green Chem 12:1237–1241

    CAS  Google Scholar 

  19. Bahrami K, Khodaei MM, Naali F (2008) J Org Chem 73:6835–6837

    CAS  PubMed  Google Scholar 

  20. Wang Y, Sarris K, Sauer DR, Djuric SWA (2006) Tetrahedron Lett 47:4823–4826

    CAS  Google Scholar 

  21. Maradolla MB, Allam SK, Mandha A, Chandramouli GVP (2008) Arkivoc 15:42–46

    Google Scholar 

  22. Dey M, Deb K, Dhar SS (2011) Chin Chem Lett 22:296–299

    CAS  Google Scholar 

  23. Renard G, Lerner DA (2007) New J Chem 31:1417–1420

    CAS  Google Scholar 

  24. Heravi MM, Sadjadi S, Oskooie HA, Shoar RH, Bamoharram FF (2007) Catal Commun 9:504–507

    Google Scholar 

  25. Keurulainen L, Salin O, Siiskonen A, Kern JM, Alvesalo J, Kiuru P, Maass M, Yli-Kauhaluoma J, Vuorela P (2010) J Med Chem 53:7664–7674

    CAS  PubMed  Google Scholar 

  26. Hollan G, Samuel L, Ennis B, Hinde R (1967) J Chem Soc C 20–26.

  27. Grimmett M R. (1984) Imidazoles and their benzo derivatives. In: Katritzky AR, Rees CW (eds) In Comprehensive heterocyclic chemistry, Pergamon, Oxford 5:457–487.

  28. Preston P N (1984) Benzimidazoles and congeneric tricyclic compounds. In:Weissberger A, Taylor EC (eds) In the chemistry of heterocyclic compounds, Wiley, New York, Part 1, 40:6–60.

  29. Lin SY, Isome Y, Stewart E, Liu JF, Yohannes D, Yu L (2006) Tetrahedron Lett 47:2883–2886

    CAS  Google Scholar 

  30. Nadaf RN, Siddiqui SA, Daniel T, Lahoti RJ, Srinivasan KV (2004) J Mol Catal A Chem 214:155–160

    CAS  Google Scholar 

  31. Kokare ND, Sangshetti JN, Shinde DB (2007) Synthesis 18:2829–2834

    Google Scholar 

  32. Yadav JS, Subba RBV, Premalatha K, Shiva SK (2008) Can J Chem 86:124–128

    CAS  Google Scholar 

  33. Varala R, Nasreen A, Enugala R, Adapa SR (2007) Tetrahedron Lett 48:69–72

    CAS  Google Scholar 

  34. Salehi P, Dabiri M, Zolfigol MA, Otokesh S, Baghbanzadeh M (2006) Tetrahedron Lett 47:2557–2560

    CAS  Google Scholar 

  35. Dudd LM, Venardou E, Garcia-Verdugo E, Licence P, Blake AJ, Wilson C, Poliakoff M (2003) Green Chem 5:187–192

    CAS  Google Scholar 

  36. Samanta S, Das S, Biswas P (2013) J Org Chem 78:11184–11193

    CAS  PubMed  Google Scholar 

  37. Cao X, Cheng X, Bai Y, Liu S, Deng GJ (2014) Green Chem 16:4644–4648

    CAS  Google Scholar 

  38. Jui NT, Buchwald SL (2013) Angew Chem 125:11838–11841

    Google Scholar 

  39. Nguyen KMH, Largeron M (2015) Chem Eur J 21:12606–12610

    CAS  PubMed  Google Scholar 

  40. Cao K, Tu YQ, Zhang FM (2010) Sci China Chem 53:130–134

    CAS  Google Scholar 

  41. Sharghi H, Beyzavi M H, Doroodmand M M (2008) Eur J Org Chem 4126–4138.

  42. Saha P, Ramana T, Purkait N, Ali MA, Paul R, Punniyamurthy T (2009) J Org Chem 74:8719–8725

    CAS  PubMed  Google Scholar 

  43. Chari MA, Sadanandam P, Shobha D, Mukkanti K (2010) J Heterocycl Chem 47:153–155

    CAS  Google Scholar 

  44. Kebede E, Tadikonda R, Nakka M, Inkollu B, Vidavalur S (2015) Eur J Org Chem 5929–5933.

  45. Durgareddy GANK, Ravikumar R, Ravi S, Adapa SR (2013) J Chem Sci 125:175–182

    CAS  Google Scholar 

  46. Zhang LJ, Xia J, Zhou YQ, Wang H, Wang SW (2012) Synth Commun 42:328–336

    CAS  Google Scholar 

  47. Venkateswarlu Y, Kumar SR, Leelavathi P (2013) Org Med Chem Letts 3:7

    Google Scholar 

  48. Teruyuki K, Sungbong Y, Keun-Tae H, Masanobu K, Shinji K, Yoshihisa W (1991) Chem Lett 20:1275–1278

    Google Scholar 

  49. Cho CS, Kim JU (2008) Bull Korean Chem Soc 29:1097–1098

    CAS  Google Scholar 

  50. Khalafi-Nezhad A, Panahi F (2014) ACS Catal 4:1686–1692

    CAS  Google Scholar 

  51. Daw P, Ben-David Y, Milstein D (2017) ACS Catal 11:7456–7460

    Google Scholar 

  52. Singh KS, Devi P, Sawant SG, Kaminsky W (2015) Polyhedron 100:321–325

    CAS  Google Scholar 

  53. Bennett M A, Smith A K (1974) J Chem Soc Dalton Trans 233–241

  54. Bennett MA, Huang TN, Matheson TW, Smith AK, Tucker PA (1980) Inorg Chem 19:1014–1021

    CAS  Google Scholar 

  55. Dayan O, Ozdemir N, Serbetci Z, Dincer M, Cetinkaya B, Buyukgungor O (2012) Inorg Chim Acta 392:246–253

    CAS  Google Scholar 

  56. Kirby W M M, Yoshihara G M, Sundsted K S, Warren J H (1957) Antibiot Annu 892–897.

  57. Devi P, D’Souza L, Kamat T, Rodrigues C, Naik CG (2009) Indian J Mar Sci 38:38–44

    CAS  Google Scholar 

  58. Allegrucci M, Sauer K (2007) J Bacteriol 189:2030–2038

    CAS  PubMed  Google Scholar 

  59. Dalton HM, Poulsen LK, Halasz P, Angles ML, Goodman AE, Marshall KC (1994) J Bacteriol 176:6900–6906

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Banerjee M, Chatterjee A, Kumar V, Bhutia ZT, Khandare DG, Majik MS, Roy BG (2014) RSC Advances 4:39606–39611

    CAS  Google Scholar 

  61. Kumar V, Khandare DG, Chatterjee A, Banerjee M (2013) Tetrahedron Lett 54:5505–5509

    CAS  Google Scholar 

  62. Gopalaiah K, Chandrudu SN (2015) RSC Advances 5:5015–5023

    CAS  Google Scholar 

Download references

Acknowledgements

We thank CSIR for financial support and Director, National Institute of Oceanography for providing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisham S. Singh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K.S., Joy, F. & Devi, P. Ruthenium(II)-catalyzed synthesis of 2-arylbenzimidazole and 2-arylbenzothiazole in water. Transit Met Chem 46, 181–190 (2021). https://doi.org/10.1007/s11243-020-00435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00435-3

Navigation