Skip to main content
Log in

Fabrication of two-dimensional Zn/Cd-based metal-organic frameworks and their heterostructures as efficient photocatalysts for the degradation of industrial dyes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Heterostructures of metal-organic frameworks (MOFs) and metal oxides have currently been explored for their application in heterogeneous photocatalysis for wastewater remediation. We have developed two new heterostructures fabricated by integration of the [Zn(apca)2]n (Zn–MOF) and [CdCl2(apca)]n (Cd–MOF) over the hexagonal-faced surface of ZnO synthesized by template-assisted method and abbreviated as Zn/Cd–MOF@ZnO. The as-synthesized heterostructures were characterized by employing morphological (FE–SEM), thermal (TGA), and spectral techniques (FT–IR, UV–Vis, XPS, and PXRD). Their performance for the degradation of hazardous industrial dyes (methylene blue (MB), malachite green (MG), and methyl violet (MV)) has been explored. The response in terms of photodegradation efficacy, (89.4%, 90%) MB, (90.7%, 94.5%) MG, and (90.1%, 92.5%) MV was recorded in the presence of Zn–MOF@ZnO and Cd–MOF@ZnO heterostructures, respectively, at optimal conditions (pH–7, catalyst dose–0.6 g/L, and dye concentration–5 mg/L). The rate constant values for Zn–MOF@ZnO and Cd–MOF@ZnO heterostructures are (0.0247 min−1, 0.0315 min−1) MB, (0.0312 min−1, 0.0359 min−1) MG, and (0.0278 min−1, 0.0372 min−1) MV, respectively. These heterostructures are found to be promising photocatalysts as compared to pristine metal oxides owing to their synergistic effect. Moreover, the heterostructures have low band gap energy and high surface area which results in offering more active sites for carrying out photocatalytic reactions and enhancing the efficiency of catalysts. Furthermore, the fabricated photocatalysts demonstrate excellent stability and recyclability over five experimental cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable

References

  1. Wang C-C, Li J-R, Lv X-L, Zhang Y-Q, Guo G (2014) Energ. Environ Sci 7:2831–2867. https://doi.org/10.1039/C4EE01299B

    Article  CAS  Google Scholar 

  2. Bansal P, Kaur, D (2020) Sud Chapter 7

  3. Gleick PH (2000) Water Int 25:127–138. https://doi.org/10.1080/02508060008686804

    Article  Google Scholar 

  4. Wu Z, Yuan X-Z, Zhang Z, Wang H, Jiang L, Zeng G (2016) ChemCatChem 9:41–64. https://doi.org/10.1002/cctc.201600808

    Article  CAS  Google Scholar 

  5. Deshphande SD (2001) Ind J Fibre Text Res 26:136–142

    Google Scholar 

  6. Lin C, Qiao Z, Zhang J, Tang J, Zhang Z, Guo Z (2019) ES Energy Environ 4:27–33

    Google Scholar 

  7. Chen J, Wang X, Huang Y, Lv S, Cao X, Yun J, Cao D (2018). Eng Sci. https://doi.org/10.30919/es8d666

    Article  Google Scholar 

  8. Wei H, Ma J, Shi Y, Cui D, Liu M, Lu N, Wang N, Wu T, Wujcik EK, Guo Z (2018) ES Mater Manuf 2:28–34

    Google Scholar 

  9. Yang X, You F, Zhao Y, Bai Y, Shao L (2018) ES Energy Environ 1:106–113

    Google Scholar 

  10. Sun M, Yuan L, Yang X, Shao L (2020) ES Mater Manuf 9:40–47

    CAS  Google Scholar 

  11. Burgaz E, Erciyes A, Andac M, Andac O (2019) Inorg Chim Acta 485:118–124. https://doi.org/10.1016/j.ica.2018.10.014

    Article  CAS  Google Scholar 

  12. Xiao H, Zhang W, Yao Q, Huang L, Chen L, Boury B, Chen Z (2019) Appl Catal B 244:719–731. https://doi.org/10.1016/j.apcatb.2018.11.026

    Article  CAS  Google Scholar 

  13. Lu C-M, Liu J, Xiao K, Harris AT (2010) Chem Eng J 156:465–470. https://doi.org/10.1016/j.cej.2009.10.067

    Article  CAS  Google Scholar 

  14. Sud D, Kaur G (2021) Polyhedron 193:114897. https://doi.org/10.1016/j.poly.2020.114897

    Article  CAS  Google Scholar 

  15. Yang J, Hou W, Pan R, Zhou M, Zhang S, Zhang Y (2022) J Alloy Compd 897:163187. https://doi.org/10.1016/j.jallcom.2021.163187

    Article  CAS  Google Scholar 

  16. Kaur G, Anthwal A, Kandwal P, Sud D (2023) Inorganica Chim Acta 545:121248. https://doi.org/10.1016/j.ica.2022.121248

    Article  CAS  Google Scholar 

  17. Abazari R, Ataei F, Morsali A, Slawin AMZ, Warren CLC, Appl ACS (2019) Mater Interfaces 11:45442–45454. https://doi.org/10.1021/acsami.9b16473

    Article  CAS  Google Scholar 

  18. Goh SH, Lau HS, Yong WF (2022) Small 18:2107536. https://doi.org/10.1002/smll.202107536

    Article  CAS  Google Scholar 

  19. Qiu T, Liang Z, Guo W, Tabassum H, Gao S, Zou R (2020) ACS Energy Lett 5:520–532. https://doi.org/10.1021/acsenergylett.9b02625

    Article  CAS  Google Scholar 

  20. Tan X, Liu J, Huang Q, Wu Y, Lin X, Zeb A, Yuan Z, Xu X, Luo Y (2022) J Alloy Compd 895:162569. https://doi.org/10.1016/j.jallcom.2021.162569

    Article  CAS  Google Scholar 

  21. Wanigarathna DKJA, Gao J, Liu B (2020) Mater Adv 1:310–320. https://doi.org/10.1039/D0MA00083C

    Article  CAS  Google Scholar 

  22. Liang Y, Zeng Z, Yang J, Yang G, Han Y (2021) Coll Surf A 624:126796. https://doi.org/10.1016/j.colsurfa.2021.126796

    Article  CAS  Google Scholar 

  23. Hu L, Mao D, Yang L, Zhu MS, Fei ZH, Sun SX, Fang D (2022) Environ Res 203:111874. https://doi.org/10.1016/j.envres.2021.111874

    Article  CAS  PubMed  Google Scholar 

  24. Hassanpour M, Hojaghan HS, Niasari MS (2017) Mol Liq 229:293–299. https://doi.org/10.1016/j.molliq.2016.12.090

    Article  CAS  Google Scholar 

  25. Ajabshir SZ, Derazkola SM, Niasari MS (2018) Ultrason Sonochem 42:171–182. https://doi.org/10.1016/j.ultsonch.2017.11.026

    Article  CAS  Google Scholar 

  26. Ajabshir SZ, Niasari MS (2019) Compos Part B 174:106930. https://doi.org/10.1016/j.compositesb.2019.106930

    Article  CAS  Google Scholar 

  27. Mohatari F, Mozdianfard MR, Niasari MS (2015) Saf Environ Prot 93:282–292. https://doi.org/10.1016/j.psep.2014.06.006

    Article  CAS  Google Scholar 

  28. Monsef R, Arani MG, Niasari MS, Appl ACS (2021) Energy Mater 4:680–695. https://doi.org/10.1021/acsaem.0c02557

    Article  CAS  Google Scholar 

  29. Ajabshir S, Morassaei MS, Amiri O, Niasari MS, Foong LK (2020) Foong ceram. Int 46:17186–17196. https://doi.org/10.1016/j.ceramint.2020.03.014

    Article  CAS  Google Scholar 

  30. Amiri M, Salavati-Niasari M, Pardakhty A, Ahmadi M, Akbari A (2017) Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater Sci Eng C 76:1085–1093. https://doi.org/10.1016/j.msec.2017.03.208

    Article  CAS  Google Scholar 

  31. Monsef R, Niasari MS (2021) Biosens Bioelectron 178:113017. https://doi.org/10.1016/j.bios.2021.113017

    Article  CAS  PubMed  Google Scholar 

  32. Anwer S, Anjum DH, Luo S, Abbas Y, Li B, Iqbal S, Liao K (2021) Chem Eng J 406:126827. https://doi.org/10.1016/j.cej.2020.126827

    Article  CAS  Google Scholar 

  33. Irfan RM, Tahir MH, Maqsood M, Lin Y, Bashir T, Iqbal S, Zhao J, Gao L, Haroon M (2020) J Catal 390:196–205. https://doi.org/10.1016/j.jcat.2020.07.034

    Article  CAS  Google Scholar 

  34. Ikram M, Haider A, Imran M, Haider J, Naz S, Ul-Hamid A, Shahzadi A, Ghazanfar K, Nabgan W (2023) Int J Biol Macromol 230:123190. https://doi.org/10.1016/j.ijbiomac.2023.123190

    Article  CAS  PubMed  Google Scholar 

  35. Wei T, Niu B, Zhao G (2020) ACS Appl Mater Interfaces 12:39273–39281

    Article  CAS  PubMed  Google Scholar 

  36. Xia G, Zheng Y, Sun Z, Xia S, Ni Z, Yao J (2022) Environ Sci Pollut Res 29:39441–39450. https://doi.org/10.1007/s11356-022-18989-3

    Article  CAS  Google Scholar 

  37. Xu P, Ding C, Li Z, Yu R, Cui H, Gao S (2023) Chemosphere 319:137995. https://doi.org/10.1016/j.chemosphere.2023.137995

    Article  CAS  PubMed  Google Scholar 

  38. Patel RV, Yadav A (2022) J Mol Struct 1252:132128. https://doi.org/10.1016/j.molstruc.2021.132128

    Article  CAS  Google Scholar 

  39. Iqbal S, Bahadur A, Javed M, Hakami O, Irfan RM, Ahmad Z, Alobaid A, Al-Anazy MM, Baghdadi HB, Abd-Rabboh HSM, Al-Muhimeed TI, Liu G, Nawaz M (2021) J Mater Sci Eng B 272:115320. https://doi.org/10.1016/j.mseb.2021.115320

    Article  CAS  Google Scholar 

  40. Goktas S, Goktas A (2021) J Alloy Compd 863:158734. https://doi.org/10.1016/j.jallcom.2021.158734

    Article  CAS  Google Scholar 

  41. Sher M, Javed M, Shahid S, Iqbal S, Qamar MA, Bahadur A, Qayyum MA (2021) RSC Adv 11:2025–2039. https://doi.org/10.1039/D0RA08573A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chinnathambi A (2022) J Alloy Compd 890:161742. https://doi.org/10.1016/j.jallcom.2021.161742

    Article  CAS  Google Scholar 

  43. Trindade LG, Borba KMN, Trench AB, Zanchet L, Teodoro V, Pontes FML, Longo E, Mazzo TM (2021) J Solid State Chem 293:121794. https://doi.org/10.1016/j.jssc.2020.121794

    Article  CAS  Google Scholar 

  44. Samy M, Ibrahim MG, Alalm MG, Fujii M (2020) Sep Purif Technol 249:117173. https://doi.org/10.1016/j.seppur.2020.117173

    Article  CAS  Google Scholar 

  45. Wang X, Cao Z, Du B, Zhang Y, Zhang R (2020) Compos Part B 183:107685. https://doi.org/10.1016/j.compositesb.2019.107685

    Article  CAS  Google Scholar 

  46. Gupta NK, Bae J, Kim S, Kim KS (2021) Chemosphere 274:129789. https://doi.org/10.1016/j.chemosphere.2021.129789

    Article  CAS  PubMed  Google Scholar 

  47. Mahmoodi NM, Oveisi M, Taghizadeh A (2019) J Hazard Mater 368:746–759. https://doi.org/10.1016/j.jhazmat.2019.01.107

    Article  CAS  PubMed  Google Scholar 

  48. Kumar G, Masram DT (2021) ACS Omega 6:9587–9599. https://doi.org/10.1021/acsomega.1c00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaur A, Bajaj B, Kaushik A, Saini A, Sud D (2002) Mater Sci Eng B 286:116005. https://doi.org/10.1016/j.mseb.2022.116005

    Article  CAS  Google Scholar 

  50. Kaur A, Bajaj B, Sud D (2022) J Iran Chem Soc 19(11):4473–4489. https://doi.org/10.1007/s13738-022-02616-6

    Article  CAS  Google Scholar 

  51. Kaur G, Komal PK, Sud D (2023) J Solid State Chem 319:123833. https://doi.org/10.1016/j.jssc.2022.123833

    Article  CAS  Google Scholar 

  52. Kaur A, Mehta VS, Kaur G, Sud D (2023). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-25234-y

    Article  Google Scholar 

  53. Modwi A, Taha KK, Khezami L, Al-Ayed AS, Al-Duaij OK, Khairy M, Bououdina M (2020) J Inorg Organomet Polym Mater 30:2633–2644. https://doi.org/10.1007/s10904-019-01425-4

    Article  CAS  Google Scholar 

  54. Chemingui H, Mzali JC, Missaoui T, Konyar M, Smiri M, Yatmaz HC, Hafiane A (2021) Desalin Water Treat 209:402–413. https://doi.org/10.5004/dwt.2021.26644

    Article  CAS  Google Scholar 

  55. Georgekutty R, Seery MK, Pillai SC (2008) J Phys Chem C 112:13563–13570. https://doi.org/10.1021/jp802729a

    Article  CAS  Google Scholar 

  56. Feng W, Yang X, He Z, Liu M (2021) J Phys D Appl Phys 54:135105. https://doi.org/10.1088/1361-6463/abd503

    Article  CAS  Google Scholar 

  57. Johra FT, Jung WG (2015) Appl Catal A 491:52–57. https://doi.org/10.1016/j.apcata.2014.11.036

    Article  CAS  Google Scholar 

  58. Cavalcante LS, Almeida MA, Avansi W Jr, Tranquilin RL, Longo E, Batista NC, Mastelaro VR (2012) Inorg Chem 51:10675–10687. https://doi.org/10.1021/ic300948n

    Article  CAS  PubMed  Google Scholar 

  59. Amouzegar Z, Naghizadeh R, Rezaie HR, Ghahari M, Aminzare M (2015) Ceram Int 41:8352–8359. https://doi.org/10.1016/j.ceramint.2014.09.119

    Article  CAS  Google Scholar 

  60. Kaur M, Mehta SK, Kansal SK (2022) Environ Sci Pollut Res 30:8464–8484. https://doi.org/10.1007/s11356-022-18629-w

    Article  CAS  Google Scholar 

  61. Kaur A, Anderson WA, Tanvir S, Kansal SK (2019) J Colloid Interface Sci 557:236–253. https://doi.org/10.1016/j.jcis.2019.09.017

    Article  CAS  PubMed  Google Scholar 

  62. Zhao H, Qian L, Lv H, Wang Y, Zhao G (2015) ChemCatChem 100:4148–4155. https://doi.org/10.1002/cctc.201500801

    Article  CAS  Google Scholar 

  63. Thanh BN, Phung TT, Hong T, Ngo L, Thi L, Giang K (2015) Int J Nanotechnol 12:447–455. https://doi.org/10.1504/IJNT.2015.067902

    Article  Google Scholar 

  64. Wu Y, Luo H, Zhang L (2015) Environ Sci Pollut Res Int 22:17238–17243. https://doi.org/10.1007/s11356-015-5364-z

    Article  CAS  PubMed  Google Scholar 

  65. Liang R, Shen L, Jing F, Qin N, Wu L (2015) ACS Appl Mater Interfaces 7:9507–9515. https://doi.org/10.1021/acsami.6b00028

    Article  CAS  PubMed  Google Scholar 

  66. Wu Y, Luo H, Wang H (2014) RSC Adv 4:40435–40438. https://doi.org/10.1039/C4RA07566H

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Council of Scientific & Industrial Research (CSIR). Authors also appreciate the great support by the Sant Longowal Institute of Engineering & Technology to accomplish this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by GK. The first draft of the manuscript was written by GK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gagandeep Kaur.

Ethics declarations

Conflict of interest

Authors have no competing interest.

Ethics Approval and Consent to Participate

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Sud, D. Fabrication of two-dimensional Zn/Cd-based metal-organic frameworks and their heterostructures as efficient photocatalysts for the degradation of industrial dyes. Transit Met Chem 48, 249–268 (2023). https://doi.org/10.1007/s11243-023-00539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00539-6

Navigation