Skip to main content
Log in

Effects of Novel Supports on the Physical and Catalytic Properties of Tungstophosphoric Acid for Alcohol Dehydration Reactions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic behavior of tungstophosphoric acid supported on modified mesoporous silica materials for the dehydration of 2-butanol and methanol was studied. Specifically, the supports evaluated here consisted of unmodified MCM-41 and SBA-15 mesoporous silicas, and these materials coated with sub-monolayer quantities of alumina, titania, and zirconia. UV-Vis DRS and 31P-NMR spectroscopy showed that the tungstophosphoric acid species retained their chemical identity in the synthesized supported form, although the spectra were influenced by the specific support material used. In addition, their acidic properties were evaluated using temperature-programmed oxidation of isopropyl amine. The differences in reaction rates between the samples reflect both the diversity in the amount of Brønsted acidic sites available for catalysis and dissimilarities in coking resistance. These two characteristics depend, in turn, on the type of support modifier used to prepare the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okuhara T, Mizuno N, Misono M (2001) Appl Catal A 222:63

    Article  CAS  Google Scholar 

  2. Kozhevnikov IV (1995) Catal Rev Sci Eng 37:311

    Article  CAS  Google Scholar 

  3. Schwegler MA, van Bekkum H, Munck N (1991) Appl Catal 74:191

    CAS  Google Scholar 

  4. Izumi Y, Urabe K, Onaka A (1992) Zeolite, clay and heteropolyacids in organic chemistry. VCH, Weinheim, Kodansha, Tokyo, p 99

    Google Scholar 

  5. Ono Y (1992) In: Thomas JM, Zamaraev KI (eds) Perspectives in catalysis. Blackwell, London, p 341

    Google Scholar 

  6. Misono M (2001) J Chem Soc Chem Commun, 1141

  7. Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113

    Article  CAS  Google Scholar 

  8. Wang Y, Peden CHF, Choi S (2001) Catal Lett 75:169

    Article  CAS  Google Scholar 

  9. Kimura M, Nakato T, Okuhara T (1997) Appl Catal A 165:227

    Article  CAS  Google Scholar 

  10. Corma A, Martínez A, Martínez C (1996) J Catal 164:422

    Article  CAS  Google Scholar 

  11. Okuhara T, Nishimura T, Watanabe H, Misono M (1992) J Mol Catal 74:247

    Article  CAS  Google Scholar 

  12. Pizzio LR, Vazquez PG, Caceres CV, Blanco MN (2003) Appl Catal A 256:125

    Article  CAS  Google Scholar 

  13. Vazquez P, Pizzio L, Romanelli G, Autino J, Caceres C, Blanco M (2002) Appl Catal A 235:233

    Article  CAS  Google Scholar 

  14. Marme F, Coudurier G, Vedrine JC (1998) Microporous Mesoporous Mater 22:151

    Article  CAS  Google Scholar 

  15. Kozhevnikov IV, Kloetstra KR, Sinnema A, Zandbergen HW, van Bekkum H (1996) J Mol Catal A 114:287

    Article  CAS  Google Scholar 

  16. Blasco T, Corma A, Martínez A, Martínez-Escolano P (1998) J Catal 177:306

    Article  CAS  Google Scholar 

  17. Knifton JF, Edwards JC (1999) Appl Catal A 183:1

    Article  CAS  Google Scholar 

  18. Haber J, Pamin K, Matachowski L, Mucha D (2003) Appl Catal A 256:141

    Article  CAS  Google Scholar 

  19. Hodjati S, Vaezzadeh K, Petit C, Pitchon V, Kiennemann A (2001) Top Catal 16/17:151

    Article  CAS  Google Scholar 

  20. Kozhevnikov IV, Sinnema A, Jansen RJJ, Pamin K, van Bekkum H (1995) Catal Lett 30:241

    Article  Google Scholar 

  21. Madhusudhan Rao P, Wolfson A, Kababya S, Vega S, Landau MV (2005) J Catal 232:210

    Article  CAS  Google Scholar 

  22. Wang Y, Lee KY, Choi S, Peden CHF (2001) Proceedings of the 17th NACS, Toronto, Ontario, Canada, 3–8 June 2001, p 169

  23. Choi S, Wang Y, Nie Z, Liu J, Peden CHF (2000) Catal Today 55:117

    Article  CAS  Google Scholar 

  24. Kwak JH, Herrera JE, Hu JZ, Wang Y, Peden CHF (2006) Appl Catal A 300:109

    Article  CAS  Google Scholar 

  25. Herrera JE, Kwak JH, Hu JZ, Wang Y, Peden CHF, Macht JH, Iglesia E (2006) J Catal 239:200

    Article  CAS  Google Scholar 

  26. Herrera JE, Kwak JH, Hu JZ, Wang Y, Peden CHF (2006) Top Catal 39:245

    Article  CAS  Google Scholar 

  27. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548

    Article  CAS  Google Scholar 

  28. Shenderovich IG, Buntkowsky G, Schreiber A, Gedat E, Sharif S, Albrecht J, Golubev NS, Findenegg GH, Limbach HH (2003) J Phys Chem B 107:11924

    Article  CAS  Google Scholar 

  29. Parrillo DJ, Adamo AT, Kokotailo GT, Gorte RJ (1990) Appl Catal 67:107

    Article  CAS  Google Scholar 

  30. Romanelli G, Vázquez P, Pizzio L, Quaranta N, Autino J, Blanco M, Cáceres C (2004) Appl Catal A 261:163

    Article  CAS  Google Scholar 

  31. Pizzio LR, Câceres CV, Blanco MN (1998) Appl Catal A 167:283

    Article  CAS  Google Scholar 

  32. So H, Pope MT (1972) Inorg Chem 11:1441

    Article  CAS  Google Scholar 

  33. Good ML (1973) Spectrochim Acta A 29:707

    Article  Google Scholar 

  34. Iwamoto M, Furukawa H, Matsukami K, Takenaka T, Kagawa S (1983) J Am Chem Soc 105:3719

    Article  CAS  Google Scholar 

  35. Lefebvre F (1992) J Chem Soc Chem Commun, 756

  36. Edwards JC, Thiel CY, Benac B, Knifton JF (1998) Catal Lett 51:77

    Article  CAS  Google Scholar 

  37. Lopez-Salinas E, Hernandez-Cortez JG, Schifter I, Torres-Garcia E, Navarrete J, Gutierrez-Carrillo A, Lopez T, Lottici PP, Bersani D (2000) Appl Catal A 193:215

    Article  CAS  Google Scholar 

  38. Damyanova S, Dimitrov L, Mariscal R, Fierro JLG, Pertov L, Sobrados L (2003) Appl Catal A 256:183

    Article  CAS  Google Scholar 

  39. Uchida S, Inumaru K, Misono M (2000) J Phys Chem B 104:8108

    Article  CAS  Google Scholar 

  40. Biaglow AI, Parrillo DJ, Kokotailo GT, Gorte RJ (1994) J Catal 148:213

    Article  CAS  Google Scholar 

  41. Kresnawahjuesa O, Gorte RJ, de Oliveira D, Lau LY (2002) Catal Lett 82:155

    Article  CAS  Google Scholar 

  42. Fesenko EA, Barnes PA, Parkes GMB, Brown DB, Naderi M (2001) J Phys Chem B 105:6178

    Article  CAS  Google Scholar 

  43. Casuscellia SG, Crivelloa ME, Pereza CF, Ghionea G, Herrero ER, Pizzio LR, Vázquez PG, Cáceres CV, Blanco MN (2004) Appl Catal A 274:115

    Article  CAS  Google Scholar 

  44. Baertsch CD, Komala KT, Chua Y-H, Iglesia E (2002) J Catal 205:44

    Article  CAS  Google Scholar 

  45. Knozinger H, Kohne R (1966) J Catal 5:264

    Article  Google Scholar 

  46. Knozinger H, Buhl H, Kochloefl K (1972) J Catal 24:57

    Article  Google Scholar 

  47. Resasco DE, Marcus BK, Huang CS, Durante VA (1994) J Catal 146:40

    Article  CAS  Google Scholar 

  48. Stagg SM, Querini CA, Alvarez WE, Resasco DE (1997) J Catal 168:75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences. The research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at the Pacific Northwest National Laboratory. PNNL is operated for DOE by Battelle Memorial Institute under Contract# DE-AC06-76RLO-1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. F. Peden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, J.E., Kwak, J.H., Hu, J.Z. et al. Effects of Novel Supports on the Physical and Catalytic Properties of Tungstophosphoric Acid for Alcohol Dehydration Reactions. Top Catal 49, 259–267 (2008). https://doi.org/10.1007/s11244-008-9081-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9081-4

Keywords

Navigation