Skip to main content
Log in

Screening of Soluble Rhodium Nanoparticles as Precursor for Highly Active Hydrogenation Catalysts: The Effect of the Stabilizing Agents

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We report the preparation of rhodium nanoparticles (NPs) stabilized by 1-octadecanethiol (ODT), polyvinyl alcohol (PVA), and tetraoctylammonium bromide (TOAB), and their application for hydrogenation catalysis. The three metal–ligand systems correspond to different mechanism of NPs stabilization via strong covalent linkage, chemisorbed atoms and electrostatic interactions, respectively. We found a strong effect of the interaction between the stabilizer and the surface of the metal nanoparticle on the catalytic activity. The Rh NPs were studied as soluble nanoparticle catalysts and as precursors for the synthesis of supported catalysts. All catalysts were tested in the hydrogenation of cyclohexene under similar conditions as a model reaction. Generally, RhODT NPs were inactive, RhPVA NPs exhibited distinct activities in solution (aqueous biphasic catalysis) and as a supported catalyst, and RhTOAB NPs exhibited similar activities in solution and after immobilization. This last result opens the opportunity for the preparation of highly active Rh NP catalysts both in solution and as a heterogeneous catalyst. Additionally, the stability of the nanoparticles depends on the choice of ligand and on the functionalization of the support surface before immobilization. By optimizing the catalyst synthesis and reaction conditions, turnover frequencies as high as 700,000 h−1 where observed for stable and recyclable catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ertl G (2008) Handbook of heterogeneous catalysis, 2nd edn. Wiley–VCH, Weinheim

    Book  Google Scholar 

  2. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691. doi:10.1126/science.1083671

    Article  CAS  Google Scholar 

  3. Rioux RM, Song H, Grass M, Habas S, Niesz K, Hoefelmeyer JD, Yang P, Somorjai GA (2006) Monodisperse platinum nanoparticles of well-defined shape: synthesise characterization, catalytic properties and future prospects. Top Catal 39(3–4):167–174. doi:10.1007/s11244-006-0053-2

    Article  CAS  Google Scholar 

  4. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102(10):3757–3778. doi:10.1021/cr010350j

    Article  CAS  Google Scholar 

  5. Somorjai GA, Rioux RM (2005) High technology catalysts towards 100% selectivity fabrication, characterization and reaction studies. Catal Today 100(3–4):201–215. doi:10.1016/j.cattod.2004.07.059

    Article  CAS  Google Scholar 

  6. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735. doi:10.1126/science.1140484

    Article  CAS  Google Scholar 

  7. Anderson JA, Fernández Garcia M (2005) Supported metals in catalysis. Imperial College Press, London

    Book  Google Scholar 

  8. Dimitratos N, Lopez-Sanchez JA, Hutchings GJ (2012) Selective liquid phase oxidation with supported metal nanoparticles. Chem Sci 3:20–44. doi:10.1039/c1sc00524c

    Article  CAS  Google Scholar 

  9. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  10. Chen SW, Huang K, Stearns JA (2000) Alkanethiolate-protected palladium nanoparticles. Chem Mater 12(2):540–547. doi:10.1021/cm9906203

    Article  CAS  Google Scholar 

  11. Castro EG, Salvatierra RV, Schreiner WH, Oliveira MM, Zarbin AJG (2010) Dodecanethiol-stabilized platinum nanoparticles obtained by a two-phase method: synthesis, characterization, mechanism of formation, and electrocatalytic properties. Chem Mater 22(2):360–370. doi:10.1021/cm902748k

    Article  CAS  Google Scholar 

  12. Hostetler MJ, Zhong CJ, Yen BKH, Anderegg J, Gross SM, Evans ND, Porter M, Murray RW (1998) Stable, monolayer-protected metal alloy clusters. J Am Chem Soc 120(36):9396–9397. doi:10.1021/ja981454n

    Article  CAS  Google Scholar 

  13. Sarathy KV, Kulkarni GU, Rao CNR (1997) A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures. Chem Commun 6:537–538

    Article  Google Scholar 

  14. Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR (1997) Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. J Phys Chem B 101(48):9876–9880. doi:10.1021/jp971544z

    Article  CAS  Google Scholar 

  15. Zhao SY, Chen SH, Wang SY, Li DG, Ma HY (2002) Preparation, phase transfer, and self-assembled monolayers of cubic Pt nanoparticles. Langmuir 18(8):3315–3318. doi:10.1021/la011262x

    Article  CAS  Google Scholar 

  16. Yang J, Lee JY, Deivaraj TC, Too HP (2004) A highly efficient phase transfer method for preparing alkylamine-stabilized Ru, Pt, and Au nanoparticles. J Colloid Interface Sci 277(1):95–99. doi:10.1016/j.jcis.2004.03.74

    Article  CAS  Google Scholar 

  17. Bile EG, Sassine R, Denicourt-Nowicki A, Launay F, Roucoux A (2011) New ammonium surfactant-stabilized rhodium(0) colloidal suspensions: influence of novel counter-anions on physico-chemical and catalytic properties. Dalton Trans 40(24):6524–6531. doi:10.1039/c0dt01763a

    Article  Google Scholar 

  18. Larpent C, Menn FB-L, Patin H (1991) New highly water-soluble surfactants stabilize colloidal rhodium(O) suspensions useful in biphasic catalysis. J Mol Catal 65:L35–L40

    Article  CAS  Google Scholar 

  19. Noel S, Leger B, Herbois R, Ponchel A, Tilloy S, Wenz G, Monflier E (2012) Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation. Dalton Trans 41(43):13359–13363. doi:10.1039/c2dt31596c

    Article  CAS  Google Scholar 

  20. Pellegatta JL, Blandy C, Colliere V, Choukroun R, Chaudret B, Cheng P, Philippot K (2002) Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene. J Mol Catal A 178(1–2):55–61

    CAS  Google Scholar 

  21. Schulz J, Roucoux A, Patin H (1999) Unprecedented efficient hydrogenation of arenes in biphasic liquid–liquid catalysis by re-usable aqueous colloidal suspensions of rhodium. Chem Commun 6:535–536

    Article  Google Scholar 

  22. Yan N, Yuan Y, Dyson PJ (2011) Rhodium nanoparticle catalysts stabilized with a polymer that enhances stability without compromising activity. Chem Commun 47(9):2529–2531. doi:10.1039/c0cc04641h

    Article  CAS  Google Scholar 

  23. Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions. J Am Chem Soc 124(16):4228–4229

    Article  CAS  Google Scholar 

  24. Dykeman RR, Yan N, Scopelliti R, Dyson PJ (2011) Enhanced rate of arene hydrogenation with imidazolium functionalized bipyridine stabilized rhodium nanoparticle catalysts. Inorg Chem 50(3):717–719. doi:10.1021/ic102041q

    Article  CAS  Google Scholar 

  25. Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR, Dupont J (2003) The use of imidazolium ionic liquids for the formation and stabilization of Ir-0 and Rh-0 nanoparticles: efficient catalysts for the hydrogenation of arenes. Chemistry 9(14):3263–3269. doi:10.1002/chem.200304753

    Article  CAS  Google Scholar 

  26. Redel E, Kraemer J, Thomann R, Janiak C (2009) Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid–liquid hydrogenation nanocatalysts for cyclohexene. J Organomet Chem 694(7–8):1069–1075. doi:10.1016/j.jorganchem.2008.09.050

    Article  CAS  Google Scholar 

  27. Aiken JD, Finke RG (1998) Nanocluster formation synthetic, kinetic, and mechanistic studies. The detection of, and then methods to avoid, hydrogen mass-transfer limitations in the synthesis of polyoxoanion- and tetrabutylammonium-stabilized, near-monodisperse 40 ± 6 angstrom Rh(0) nanoclusters. J Am Chem Soc 120(37):9545–9554. doi:10.1021/ja9719485

    Article  CAS  Google Scholar 

  28. Aiken JD, Finke RG (1999) Polyoxoanion- and tetrabutylammonium-stabilized Rh(0)(n) nanoclusters: unprecedented nanocluster catalytic lifetime in solution. J Am Chem Soc 121(38):8803–8810

    Article  CAS  Google Scholar 

  29. Aiken JD, Finke RG (1999) Polyoxoanion- and tetrabutylammonium-stabilized, near-monodisperse, 40 ± 6 angstrom Rh(0) similar to (1500) to Rh(0) similar to (3700) nanoclusters: synthesis, characterization, and hydrogenation catalysis. Chem Mater 11(4):1035–1047. doi:10.1021/cm980699w

    Article  CAS  Google Scholar 

  30. Li Y, El-Sayed MA (2001) The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J Phys Chem B 105(37):8938–8943. doi:10.1021/jp010904m

    Article  CAS  Google Scholar 

  31. Stowell CA, Korgel BA (2005) Iridium nanocrystal synthesis and surface coating-dependent catalytic activity. Nano Lett 5(7):1203–1207. doi:10.1021/nl050648f

    Article  CAS  Google Scholar 

  32. Narayanan R, El-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: suzuki reaction catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125(27):8340–8347. doi:10.1021/ja035044x

    Article  CAS  Google Scholar 

  33. Sonstroem P, Arndt D, Wang X, Zielasek V, Baeumer M (2011) Ligand capping of colloidally synthesized nanoparticles-a way to tune metal-support interactions in heterogeneous gas-phase catalysis. Angew Chem Int Ed Engl 50(17):3888–3891. doi:10.1002/anie.201004573

    Article  CAS  Google Scholar 

  34. Kesavan L, Tiruvalam R, Rahim MHA, Saiman MIB, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331(6014):195–199. doi:10.1126/science.1198458

    Article  CAS  Google Scholar 

  35. Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3(7):551–556. doi:10.1038/nchem.1066

    Article  CAS  Google Scholar 

  36. Boennemann H, Endruschat U, Hormes J, Koehl G, Kruse S, Modrow H, Moertel R, Nagabhushana KS (2004) Activation of colloidal PtRu fuel cell catalysts via a thermal “conditioning process”. Fuel Cells 4(4):297–308. doi:10.1002/fuce.200400032

    Article  CAS  Google Scholar 

  37. Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Recoverable rhodium nanoparticles: synthesis, characterization and catalytic performance in hydrogenation reactions. Appl Catal A 338(1–2):52–57

    CAS  Google Scholar 

  38. Deng YQ, Nevell TG, Ewen RJ, Honeybourne CL, Jones MG (1993) Sulfur poisoning, recovery and related phenomena over supported palladium, rhodium and iridium catalysts for methane oxidation. Appl Catal A 101(1):51–62. doi:10.1016/0926-860x(93)80137-f

    Article  CAS  Google Scholar 

  39. Umpierre AP, de Jesus E, Dupont J (2011) Turnover numbers and soluble metal nanoparticles. Chemcatchem 3(9):1413–1418. doi:10.1002/cctc.201100159

    Article  CAS  Google Scholar 

  40. Thomas KG, Kamat PV (2000) Making gold nanoparticles glow: enhanced emission from a surface-bound fluoroprobe. J Am Chem Soc 122(11):2655–2656. doi:10.1021/ja9941835

    Article  CAS  Google Scholar 

  41. Thomas KG, Zajicek J, Kamat PV (2002) Surface binding properties of tetraoctylammonium bromide-capped gold nanoparticles. Langmuir 18(9):3722–3727. doi:10.1021/la015669d

    Article  CAS  Google Scholar 

  42. Costa NJS, Rossi LM (2012) Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale 4(19):5826–5834. doi:10.1039/c2nr31165h

    Article  CAS  Google Scholar 

  43. Oliveira RL, Zanchet D, Kiyohara PK, Rossi LM (2011) On the stabilization of gold nanoparticles over silica-based magnetic supports modified with organosilanes. Chemistry 17(16):4626–4631. doi:10.1002/chem.201002251

    Article  CAS  Google Scholar 

  44. Jacinto MJ, Silva FP, Kiyohara PK, Landers R, Rossi LM (2012) Catalyst recovery and recycling facilitated by magnetic separation: iridium and other metal nanoparticles. Chemcatchem 4(5):698–703. doi:10.1002/cctc.201100415

    Article  CAS  Google Scholar 

  45. Rossi LM, Nangoi IM, Costa NJS (2009) Ligand-assisted preparation of palladium supported nanoparticles: a step toward size control. Inorg Chem 48(11):4640–4642

    Article  CAS  Google Scholar 

  46. Jacinto MJ, Landers R, Rossi LM (2009) Preparation of supported Pt(0) nanoparticles as efficient recyclable catalysts for hydrogenation of alkenes and ketones. Catal Commun 10(15):1971–1974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to INCT-Catalise and the Brazilian government agencies FAPESP and CNPq for financial support. We also acknowledge LNNano (Campinas, Brazil) for the use of TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liane M. Rossi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, L.M., Vono, L.L.R., Garcia, M.A.S. et al. Screening of Soluble Rhodium Nanoparticles as Precursor for Highly Active Hydrogenation Catalysts: The Effect of the Stabilizing Agents. Top Catal 56, 1228–1238 (2013). https://doi.org/10.1007/s11244-013-0089-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0089-z

Keywords

Navigation