Skip to main content
Log in

Ethanol Steam Reforming: Higher Dehydrogenation Selectivities Observed by Tuning Oxygen-Mobility and Acid/Base Properties with Mn in CeO2·MnOx·SiO2 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Doping CeO2–SiO2 catalysts with Mn was found to increase H2 selectivity and decrease ethylene selectivity. In the presence of SiO2, relatively high surface areas (~150–190 m2 g−1 range) were stabilized with these coprecipitated catalysts after calcining at 500 °C for 5 h. By means of a combination of ex-situ (XRD, TPR, CO2–TPD, OSC measurements) along with in situ (Ce LIII edge XANES, DRIFTS) techniques Mn was proposed to act to improve the ability of ceria to deliver active oxygen surface species essential to the stepwise oxidative dehydrogenation of adsorbed species from ethoxides to acetates. Doping ceria with Mn at low levels improved the carbonate decomposition rate by weakening surface basicity. At high Mn content, acetates become too stable and poison catalytically active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094

    Article  CAS  Google Scholar 

  2. Bion N, Duprez D, Epron F (2012) ChemSusChem 5:76

    Article  CAS  Google Scholar 

  3. Mavrikakis M, Barteau MA (1998) J Mol Catal A 131:135

    Article  CAS  Google Scholar 

  4. Soykal II, Bayram B, Sohn H, Gawade P, Miller JT, Ozkan US (2012) Appl Catal A 449:47

    Article  CAS  Google Scholar 

  5. Song H, Zhang L, Ozkan US (2012) Top Catal 55:1324

    Article  CAS  Google Scholar 

  6. Soykal II, Sohn H, Ozkan US (2012) ACS Catal 2:2335

    Article  CAS  Google Scholar 

  7. Bayram B, Soykal II, von Deak D, Miller JT, Ozkan US (2011) J Catal 284:77

    Article  CAS  Google Scholar 

  8. Song H, Zhang L, Ozkan US (2010) Ind Eng Chem Res 49:8984

    Article  CAS  Google Scholar 

  9. Song H, Mirelamoglu B, Ozkan US (2010) Appl Catal A 382:58

    Article  CAS  Google Scholar 

  10. Song H, Ozkan US (2010) J Mol Catal A 318:21

    Article  CAS  Google Scholar 

  11. Song H, Ozkan US (2010) J Phys Chem A 114:3796

    Article  CAS  Google Scholar 

  12. Song H, Ozkan US (2009) J Catal 261:66

    Article  CAS  Google Scholar 

  13. Song H, Zhang L, Watson RB, Braden D, Ozkan US (2007) Catal Today 129:346

    Article  CAS  Google Scholar 

  14. Song H, Zhang L, Ozkan US (2007) Green Chem 9:686

    Article  CAS  Google Scholar 

  15. de Lima SM, da Silva AM, da Costa LOO, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) J Catal 268:268

    Article  Google Scholar 

  16. da Silva AM, de Souza KR, Mattos LV, Jacobs G, Davis BH, Noronha FB (2011) Catal Today 164:234

    Article  Google Scholar 

  17. de Lima SM, da Silva AM, da Costa LOO, Assaf JM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Appl Catal A 377:181

    Article  Google Scholar 

  18. Sanchez–Sanchez MC, Navarro RM, Fierro JLG (2007) Int J Hydrogen Energy 32:1462

    Article  Google Scholar 

  19. Can F, le Valant A, Bion N, Epron F, Duprez D (2008) J Phys Chem C 112:14145

    Article  CAS  Google Scholar 

  20. de Lima SM, da Silva AM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Appl Catal B 96:387

    Article  Google Scholar 

  21. Trovarelli A (2005) In: Trovarelli A (ed) Catalysis by ceria and related materials. Imperial College Press, London

    Google Scholar 

  22. Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2000) Chem Mater 12:677

    Article  CAS  Google Scholar 

  23. Balducci G, Islam MS, Kaspar J, Fornasiero P, Graziani M (2003) Chem Mater 15:3781

    Article  Google Scholar 

  24. Linganiso LZ, Jacobs G, Azzam KG, Graham UM, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2011) Appl Catal A 394:105

    Article  CAS  Google Scholar 

  25. Lambrou PS, Efstathiou AM (2006) J Catal 240:182

    Article  CAS  Google Scholar 

  26. Bao H, Chen X, Fang J, Jiang Z, Huang W (2008) Catal Lett 125:160

    Article  CAS  Google Scholar 

  27. Perez-Alonso FJ, Melián-Cabrera I, López Granados M, Kapteijn F, Fierro JLG (2006) J Catal 239:340

    Article  CAS  Google Scholar 

  28. Lianng C, Ma Z, Lin H, Ding L, Qiu J, Frandsen W, Su D (2009) J Mater Chem 19:1417

    Article  Google Scholar 

  29. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Appl Catal B 62:265

    Article  CAS  Google Scholar 

  30. Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158

    Article  CAS  Google Scholar 

  31. Qi G, Yang RT (2004) J Phys Chem B 108:15738

    Article  CAS  Google Scholar 

  32. Delimaris D, Ioannides T (2008) Appl Cat B 84:303

    Article  CAS  Google Scholar 

  33. Tang Y, Zhang H, Cui L, Ouyang C, Shi S, Tang W, Li H, Lee JS, Chen L (2010) Phys Rev B 82:125104

    Article  Google Scholar 

  34. Cen W, Liu Yue, Wu Z, Wang H, Weng X (2012) Phys Chem Chem Phys 14:5769

    Article  CAS  Google Scholar 

  35. Kang CHY, Kusaba H, Yahiro H, Sasaki K, Teraoka Y (2006) Sol State Ion 177:1799

    Article  CAS  Google Scholar 

  36. Hong WJ, Iwamoto S, Hosokawa S, Wada K, Kanai H, Inoue M (2011) J Catal 277:208

    Article  CAS  Google Scholar 

  37. Casapu M, Kröcher O, Mehring M, Nachtegaal M, Borca C, Harfouche M, Grolimund D (2010) J Phys Chem C 114:9791

    Article  CAS  Google Scholar 

  38. Wu X, Liang Q, Weng D, Fan J, Ran R (2007) Catal Today 126:430

    Article  CAS  Google Scholar 

  39. Kacimi S, Barbier J, Taha R, Duprez D (1993) Catal Lett 2:343

    Article  Google Scholar 

  40. Ressler T (1998) J Synch Rad 5:118

    Article  CAS  Google Scholar 

  41. da Silva AM, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB (2011) Appl Catal B 102:94

    Article  Google Scholar 

  42. Nachimuthu P, Shih WC, Liu RS, Jang LY, Chen JM (2000) J Solid State Chem 149:408

    Article  CAS  Google Scholar 

  43. Binet C, Daturi M, Lavalley JC (1999) Catal Today 50:207

    Article  CAS  Google Scholar 

  44. de Farias AMD, Bargiela P, Rocha MGC, Fraga MA (2008) J Cat 260:93

    Article  Google Scholar 

  45. Wachs I (1996) Cat Today 27:437

    Article  CAS  Google Scholar 

  46. Peng Y, Liu Z, Niu X, Zhou L, Fu C, Zheng H, Li J, Han W (2012) Cat Commun 19:127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from CTENERG/FINEP-01.04.0525.00. CAER acknowledges the Commonwealth of Kentucky for financial support. M.C. Ribeiro acknowledges the scholarship received from CNPq. The group thanks the Laboratório Nacional de Luz Síncrotron for the opportunity to perform XANES measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, M.C., Jacobs, G., Davis, B.H. et al. Ethanol Steam Reforming: Higher Dehydrogenation Selectivities Observed by Tuning Oxygen-Mobility and Acid/Base Properties with Mn in CeO2·MnOx·SiO2 Catalysts. Top Catal 56, 1634–1643 (2013). https://doi.org/10.1007/s11244-013-0098-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0098-y

Keywords

Navigation