Skip to main content
Log in

Ethanol Reforming Reactions Over Co and Cu Based Catalysts Obtained from LaCoCuO3 Perovskite-Type Oxides

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

An Erratum to this article was published on 19 February 2014

Abstract

The performance of catalysts derived from LaCo1−xCuxO3 (x = 0.0 or 0.2) perovskite-type oxides for steam reforming (SR) and oxidative SR of ethanol at 773 K was evaluated. All catalysts deactivated during SR of ethanol. In the absence of Cu, the increase of calcination temperature from 873 to 1,073 K did not affect the stability of the samples. On the other hand, for the samples containing Cu, it was detected a higher rate of deactivation when the calcination temperature was increased. The loss of activity of LaCoO3 was attributed to the oxidation of Co metallic particles and amorphous carbon formation as revealed by in situ XAFS and thermogravimetric analyses. The addition of Cu favored the formation of carbon filaments. Moreover, the presence of oxygen in the feed decreased the carbon formation, improving the stability of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094

    Article  CAS  Google Scholar 

  2. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  3. Ni M, Leung YC, Leung MKH (2007) Int J Hydrogen Energy 32:3238

    Article  CAS  Google Scholar 

  4. de la Piscina PR, Homs N (2008) Chem Soc Rev 37:2459

    Article  Google Scholar 

  5. Chen H, Yu H, Peng F, Yang G, Wang H, Yang J, Tang Y (2010) Chem Eng J 160:333

    Article  CAS  Google Scholar 

  6. de Lima SM, da Silva AM, da Costa LOO, Assaf JM, Mattos LV, Sarkari R, Venugopal A, Noronha FB (2012) Appl Catal B 121–122:1

    Article  Google Scholar 

  7. Urasaki K, Tokunaga K, Sekine Y, Matsukata M, Kikuchi E (2008) Catal Commun 9:600

    Article  CAS  Google Scholar 

  8. Natile MM, Poletto F, Galenda A, Glisenti A, Montini T, De Rogatis L, Fornasiero P (2008) Chem Mater 20:2314

    Article  CAS  Google Scholar 

  9. Chen SQ, Liu Y (2009) Int J Hydrogen Energy 34:4735

    Article  CAS  Google Scholar 

  10. Liu JY, Lee CC, Wang CH, Yeh CT, Wang CB (2010) Int J Hydrogen Energy 35:4069

    Article  CAS  Google Scholar 

  11. de Lima SM, da Silva AM, da Costa LOO, Assaf JM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2010) Appl Catal A 377:181

    Article  Google Scholar 

  12. Chen SQ, Li YD, Liu Y, Bai X (2011) Int J Hydrogen Energy 36:5849

    Article  CAS  Google Scholar 

  13. Valderrama G, Goldwasser MR, de Navarro CU, Tatibouë JM, Barrault J, Batiot-Dupeyrat C, Martínez F (2005) Catal Today 107:785

    Article  Google Scholar 

  14. Pena MA, Fierro JLG (2001) Chem Rev 101:1981

    Article  CAS  Google Scholar 

  15. de Araujo GC, de Lima SM, Rangel MC, la Parola V, Pena MA, Fierro JLG (2005) Catal Today 107–108:906

    Article  Google Scholar 

  16. Toniolo FS, Magalhães RNSH, Perez CAC, Schmal M (2012) Appl Catal B 117–118:156

    Article  Google Scholar 

  17. Kuras M, Roucou R, Petit C (2007) J Mol Catal A 265:209

    Article  CAS  Google Scholar 

  18. Barros BS, Melo DMA, Libs S, Kiennemann A (2010) Appl Catal A 378:69

    Article  CAS  Google Scholar 

  19. Hwang CC, Wu TY, Wan J, Tsai JS (2004) Mater Sci Eng B 111:49

    Article  Google Scholar 

  20. da Silva AAA, da Costa LOO, Mattos LV, Noronha FB (2013) Catal Today 213:25–32

    Article  Google Scholar 

  21. Jacoby M (2001) Chem Eng News 79:33

    Google Scholar 

  22. Ressler T (1997) WinXAS 97 Version 1.0

  23. Jacobs G, Ji Y, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2007) Appl Catal A 333:177

    Article  CAS  Google Scholar 

  24. Ravel B, Synch J (2001) J Synchrotron Rad 8:314

    Article  CAS  Google Scholar 

  25. Rehr JJ, Zabinsky SI, Albers RC (1992) Phys Rev Lett 69:3397

    Article  CAS  Google Scholar 

  26. Newville M, Ravel B, Haskel D, Stern EA, Yacoby Y (2005) Phys B 208/209:154

    Article  Google Scholar 

  27. Huang L, Bassir M, Kaliaguine S (2005) Appl Surf Sci 243:360

    Article  CAS  Google Scholar 

  28. Merino NA, Baebero BP, Grange P, Cadús LE (2005) J Catal 231:232

    Article  CAS  Google Scholar 

  29. Xiulan C, Yuan L (2000) Chem Eng J 78:205

    Article  CAS  Google Scholar 

  30. Porta P, Rossi S, Faticanti M, Minelli G, Pettiti I, Lisi L, Turco M (1999) J Solid State Chem 146:291

    Article  CAS  Google Scholar 

  31. Zhang R, Villanueva A, Alamdari HB, Kaliaguine S (2006) Appl Catal B 64:220

    Article  CAS  Google Scholar 

  32. Tien-Thao N, Alamdari H, Kaliaguine S (2008) J Solid State Chem 181:2006

    Article  Google Scholar 

  33. de Lima SM, da Silva AM, da Costa LOO, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) J Catal 268:268

    Article  Google Scholar 

  34. de Lima SM, da Silva AM, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) Appl Catal A 352:95

    Article  Google Scholar 

  35. Jacobs G, Ribeiro MC, Ma W, Ji Y, Khalid S, Sumodjo PTA, Davis BH (2009) Appl Catal A 361:137

    Article  CAS  Google Scholar 

  36. Wang H, Liu Y, Wang L, Qin YN (2008) Chem Eng J 145:25

    Article  CAS  Google Scholar 

  37. de Lima SM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) J Catal 257:356

    Article  Google Scholar 

  38. Fatsikostas AN, Kondarides DI, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  39. Galetti AE, Gomez MF, Arrua LA, Abello MC (2008) Appl Catal A 348:94

    Article  CAS  Google Scholar 

  40. Sanchez–Sanchez MC, Navarro RM, Fierro JLG (2007) Int J Hydrogen Energy 32:1462

    Article  Google Scholar 

  41. Li Y, Li D, Wang G (2011) Catal Today 162:1

    Article  CAS  Google Scholar 

  42. Fierro V, Akidim O, Mirodatos C (2003) Green Chem 5:20

    Article  CAS  Google Scholar 

  43. Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S (2006) Int J Hydrogen Energy 31:2193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Andressa A. A. da Silva and Mauro C. Ribeiro acknowledge the scholarship received from CNPq. This work received financial support of CTENERG/FINEP-01.04.0525.00. The authors thank also LNLS for the support and beamline time under project # D04B-XAFS-1, 14405. The work carried out at the CAER was supported in part by funding from the Commonwealth of Kentucky. Argonne’s research was supported in part by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL)under Project AA-10-15; 49261-00-107. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and MRCAT member institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisiane V. Mattos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, A.A.A., Ribeiro, M.C., Cronauer, D.C. et al. Ethanol Reforming Reactions Over Co and Cu Based Catalysts Obtained from LaCoCuO3 Perovskite-Type Oxides. Top Catal 57, 637–655 (2014). https://doi.org/10.1007/s11244-013-0222-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0222-z

Keywords

Navigation