Skip to main content
Log in

Effects of Ceria Morphology on Catalytic Performance of Ni/CeO2 Catalysts for Low Temperature Steam Reforming of Ethanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effects of ceria morphology on catalytic performance of Ni/CeO2 catalysts for low temperature steam reforming of ethanol are investigated. XRD analyses showed that Ni supported on CeO2 nanostructures (nanocube, nanorod and flower-like) exhibited a smaller Ni0 crystallite size, which favoured ethanol decomposition at low temperatures as revealed by TPSR experiments. Moreover, regardless of ceria morphology, all catalysts deactivate during reaction at 300 °C. However, the amount of carbon formed is higher over Ni supported on CeO2 nanocubes, which exhibited a higher formation of nickel carbide phase, as detected by XANES analyses. The nature and the amount of carbon formed depends on reaction temperature. Increasing reaction temperature increases the amount of carbon deposited and favores the formation of carbon filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094

    Article  CAS  Google Scholar 

  2. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  3. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  4. Ni M, Leung YC, Leung MKH (2007) Int J Hydrog Energy 32:3238

    Article  CAS  Google Scholar 

  5. de la Piscina PR, Homs N (2008) Chem Soc Rev 37:2459

    Article  Google Scholar 

  6. de Lima SM, Colman RC, Jacobs G, Davis BH, Souza KR, de Lima AFF, Appel LG, Mattos LV, Noronha FB (2009) Catal Today 146:110

    Article  Google Scholar 

  7. Basagiannis AC, Panagiotopoulou P, Verykios XE (2008) Topics in Catal 51:2

    Article  CAS  Google Scholar 

  8. Sun J, Qiu XP, Wu F, Zhu WT (2005) Int J Hydrog Energy 30:437

    Article  CAS  Google Scholar 

  9. Ciambelli P, Palma V, Ruggiero A (2010) Appl Catal B 96:18

    Article  CAS  Google Scholar 

  10. Ciambelli P, Palma V, Ruggiero A, Iaquaniello G (2010) Appl Catal B 96:190

    Article  CAS  Google Scholar 

  11. Shi Q, Liu C, Chen W (2009) J Rare Earths 27:948

    Article  Google Scholar 

  12. Sun J, Qiu XP, Wu F, Zhu WT, Wang W, Hao S (2004) Int. J Hydrog Energy 29:1075

    Article  CAS  Google Scholar 

  13. Llorca J, la Piscina PR, Dalmon JA, Sales J, Homs N (2003) Appl Catal B 43:355

    Article  CAS  Google Scholar 

  14. Torres JA, Llorca J, Casanovas A, Domínguez M, Salvadó J, Montané D (2007) J Power Sources 169:158

    Article  CAS  Google Scholar 

  15. Koh ACW, Chen L, Leong WKT, Ang P, Johnson BFG, Khimyak T, Lin J (2009) Int J Hydrog Energy 34:5691

    Article  CAS  Google Scholar 

  16. Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Int J Hydrog Energy 32:2367

    Article  CAS  Google Scholar 

  17. Sanchez-Sanchez MC, Yerga RMN, Kondarides DI, Verykios XE, Fierro JLG (2010) J Phys Chem A 114:3873

    Article  Google Scholar 

  18. Palma V, Castaldo F, Ciambeli P, Iaquaniello G (2014) Appl Catal B 145:73

    Article  CAS  Google Scholar 

  19. Ricote S, Jacobs G, Milling M, Ji Y, Patterson PM, Davis BH (2010) Appl Catal A 303:35

    Article  Google Scholar 

  20. Jacobs G, Davis BH (2010) Int J Hydrog Energy 35:3522

    Article  CAS  Google Scholar 

  21. Schmitz PJ, Usmen RK, Peters CR, Graham GW, McCabe RW (1993) Appl Surf Sci 72:181

    Article  CAS  Google Scholar 

  22. Du X, Zhang D, Shi L, Gao R, Zhang J (2012) J Phys Chem C 116:10009

    Article  CAS  Google Scholar 

  23. Si R, Flytzani-Stephanopoulos M (2008) Angew. Chem Int 47:2884

    Article  CAS  Google Scholar 

  24. Soykal II, Bayram B, Sohn H, Gawade P, Miller JT, Ozkan US (2012) Appl Catal A 449:47

    Article  CAS  Google Scholar 

  25. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380

    Article  CAS  Google Scholar 

  26. Wei J, Iglesia E (2004) J Catal 224:370

    Article  CAS  Google Scholar 

  27. Chafik T, Kondarides DI, Verykios XE (2000) J Catal 190:446

    Article  CAS  Google Scholar 

  28. Basagiannis AC, Verykios XE (2006) Appl Catal A 308:182

    Article  CAS  Google Scholar 

  29. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  30. Ciftci A, Ligthart DAJM, Pastorino P, Hensen EJM (2013) Appl Catal B 130:325

    Article  Google Scholar 

  31. Wu Z, Li M, Howe J, Meyer HM, Overbury SH (2010) Langmuir 26:16595

    Article  CAS  Google Scholar 

  32. Roh HS, Jun KW, Dong WS, Park SE, Joe YI (2002) J Mol Catal A 181:137

    Article  CAS  Google Scholar 

  33. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50:285

    Article  CAS  Google Scholar 

  34. Yao HC, Yao YF (1984) J Catal 86:254

    Article  CAS  Google Scholar 

  35. Shyu JZ, Otto K (1989) J Catal 115:16

    Article  CAS  Google Scholar 

  36. Idriss H, Diagne C, Hindermann JP, Kiennemann A, Barteau MA (1995) J Catal 155:219

    Article  CAS  Google Scholar 

  37. Yee A, Morrison SJ, Idriss H (1999) J Catal 186:279

    Article  CAS  Google Scholar 

  38. Yee A, Morrison SJ, Idriss H (2000) Catal Today 63:327

    Article  CAS  Google Scholar 

  39. da Silva AM, de Souza KR, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB (2011) Appl Catal B 102:94

    Article  Google Scholar 

  40. de Lima SM, Silva AM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) Catal Today 138:162

    Article  Google Scholar 

  41. Raskó J, Dömök M, Baán K, Erdőhelyi A (2006) Appl Catal A 299:202

    Article  Google Scholar 

  42. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  43. Augustin E, Galetti E, Gomez MF, Arrua LA, Abello MC (2008) Appl Catal A 348:94

    Article  Google Scholar 

  44. Moraes TS, Neto RCR, Ribeiro MC, Mattos LV, Kourtelesis M, Ladas S, Verykios X, Noronha FB (2014) Catal Today. doi:10.1016/j.cattod.2014.05.045

    Google Scholar 

  45. de Lima SM, da Silva AM, da Costa LOO, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) J Catal 268:268

    Article  Google Scholar 

  46. de Lima SM, da Silva AM, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB (2009) Appl Catal A 352:95

    Article  Google Scholar 

  47. de Lima SM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) J Catal 257:356

    Article  Google Scholar 

Download references

Acknowledgments

Tamara S. Moraes, Mauro C. Ribeiro and Raimundo C. Rabelo Neto acknowledge a scholarship received from CNPq and FAPERJ. The group thanks the LNLS for the assigned beamtime and for the support to perform the XAFS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio B. Noronha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, T.S., Neto, R.C.R., Ribeiro, M.C. et al. Effects of Ceria Morphology on Catalytic Performance of Ni/CeO2 Catalysts for Low Temperature Steam Reforming of Ethanol. Top Catal 58, 281–294 (2015). https://doi.org/10.1007/s11244-015-0369-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0369-x

Keywords

Navigation