Skip to main content
Log in

Shape Control in Gold Nanoparticles by N-Containing Ligands: Insights from Density Functional Theory and Wulff Constructions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The controlled growth promoted by the use of ligands can affect the structural properties of nanoparticles, preferential growth and most likely exposed facets in their final shape. The chemistry is deeply dominated by the close relationship between both the interaction of the ligands and the metal structure. In the present work, we have illustrated the change in the nanoparticle shape as a function of a series of nitrogen bases. Particularly, we have employed Density Functional Theory to obtain the interaction energies of a series of nitrogen containing bases to gold surfaces with different orientations. The adsorption strength is found to correlate with the HOMO position of the ligand thus providing a fast screening tool for this property. Moreover, for small N-bases with high N content we have found that the shape can be tuned as a function of the coverage and the final structure at high coverages severely departs from that of bare gold nanoparticles. We have found variations in the different extension of the facets that can be further employed in obtaining structure sensitivity and the right chemical and catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  Google Scholar 

  2. Hvolbæk B et al (2007) Catalytic activity of Au nanoparticles. Nano Today 2(4):14–18

    Article  Google Scholar 

  3. Falsig H et al (2008) Trends in the catalytic CO oxidation activity of nanoparticles. Angew Chem Int Ed 47(26):4835–4839

    Article  CAS  Google Scholar 

  4. Barmparis GD, Remediakis IN (2012) Dependence on CO adsorption of the shapes of multifaceted gold nanoparticles: a density functional theory. Phys Rev B 86(8):085457

    Article  Google Scholar 

  5. Siler CGF et al (2014) Switching selectivity in Oxidation reactions on gold: the mechanism of C–C vs C–H bond activation in the acetate intermediate on Au(111). ACS Catal 4(9):3281–3288

    Article  CAS  Google Scholar 

  6. Cremer T et al (2014) Tuning the stability of surface intermediates using adsorbed oxygen: acetate on Au(111). J Phys Chem Lett 5(7):1126–1130

    Article  CAS  Google Scholar 

  7. Kosuda KM et al (2012) Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew Chem Int Ed 51(7):1698–1701

    Article  CAS  Google Scholar 

  8. Stowers KJ, Madix RJ, Friend CM (2013) From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: oxygen-assisted coupling reactions. J Catal 308(Supplement C): 131–141

    Article  CAS  Google Scholar 

  9. Stephen A, Hashmi K (2004) Homogeneous catalysis by gold. Gold Bull 37(1):51–65

    Article  Google Scholar 

  10. Heinz H et al (2017) Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep 72(1):1–58

    Article  CAS  Google Scholar 

  11. Barmparis GD, Honkala K, Remediakis IN (2013) Thiolate adsorption on Au(hkl) and equilibrium shape of large thiolate-covered gold nanoparticles. J Chem Phys 138(6):064702

    Article  Google Scholar 

  12. Barmparis GD et al (2015) Nanoparticle shapes by using Wulff constructions and first-principles calculations. Beilstein J Nanotechnol 6:361–368

    Article  Google Scholar 

  13. Almora-Barrios N et al (2014) Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett 14(2):871–875

    Article  CAS  Google Scholar 

  14. Gómez-Graña S et al (2013) Au@Ag nanoparticles: halides stabilize {100} facets. J Phys Chem Lett 4(13):2209–2216

    Article  Google Scholar 

  15. Li Q et al (2017) Shape control in concave metal nanoparticles by etching. Nanoscale 9(35):13089–13094

    Article  CAS  Google Scholar 

  16. Chen G et al (2016) Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat Mater 15(5):564–569

    Article  CAS  Google Scholar 

  17. Almora-Barrios N et al (2017) Concerted chemoselective hydrogenation of acrolein on secondary phosphine oxide decorated gold nanoparticles. ACS Catal 7(6):3949–3954

    Article  CAS  Google Scholar 

  18. Fiorio JL, López N, Rossi LM (2017) Gold–ligand-catalyzed selective hydrogenation of alkynes into cis-alkenes via H2 heterolytic activation by frustrated Lewis Pairs. ACS Catal 7(4):2973–2980

    Article  CAS  Google Scholar 

  19. Arndt S, Rudolph M, Hashmi ASK (2017) Gold-based frustrated Lewis acid/base pairs (FLPs). Gold Bull 50(3):267–282

    Article  CAS  Google Scholar 

  20. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  23. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

  24. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  25. Bučko T et al (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114(43):11814–11824

    Article  Google Scholar 

  26. Almora-Barrios N et al (2014) Costless derivation of dispersion coefficients for metal surfaces. J Chem Theory Comput 10(11):5002–5009

    Article  CAS  Google Scholar 

  27. Álvarez-Moreno M et al (2015) Managing the computational chemistry big data problem: the ioChem-BD platform. J Chem Inf Model 55(1):95–103

    Article  Google Scholar 

  28. Singh-Miller NE, Marzari N (2009) Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys Rev B 80(23):235407

    Article  Google Scholar 

  29. Garcia-Ratés M, López N (2016) Multigrid-based methodology for implicit solvation models in periodic DFT. J Chem Theory Comput 12(3):1331–1341

    Article  Google Scholar 

  30. Wulff G (1901) Zeitschrift fur Krishtallographie 34:449–530

    Google Scholar 

  31. Appl J (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  32. Shi H, Stampfl C (2008) Shape and surface structure of gold nanoparticles under oxidizing conditions. Phys Rev B 77(9):094127

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the MINECO (Grant Number CTQ2015-68770-R) and Marie Curie-COFUND (Grant Number 291787-ICIQ-IPMP, M.S.). M. Domingo thanks Fundació la Caixa for a Summer Fellowship at ICIQ. We would like to thank BSC-RES for generous computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lopez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingo, M., Shahrokhi, M., Remediakis, I.N. et al. Shape Control in Gold Nanoparticles by N-Containing Ligands: Insights from Density Functional Theory and Wulff Constructions. Top Catal 61, 412–418 (2018). https://doi.org/10.1007/s11244-017-0880-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0880-3

Keywords

Navigation