Skip to main content
Log in

Femtosecond and Attosecond Electron Transfer Dynamics of Semiconductors Probed by the Core-Hole Clock Spectroscopy

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ultrafast electron transfer dynamics is a relevant topic to fundamental as well as many applied areas like femtochemistry, heterogeneous catalysis, surface photochemistry, molecular electronics, solar energy, among others. One way to probe it is through the resonant Auger spectroscopy (RAS), which provides a synchrotron radiation-based alternative to time-resolved optical spectroscopies in studying charge dynamics in the femtosecond and attosecond time regimes. RAS following core excitation presents major advantages: (i) the core-hole lifetime probed by core level spectroscopy can be used as a fast internal clock and insofar very low time scales in the range of femtoseconds (10−15 s) down to hundred attoseconds (10−18 s) can be achieved, the so-called core-hole clock (CHC) method; (ii) the inherent atomic specificity of core levels; and (iii) the surface sensitivity of low energy electrons adds further up. Here, the CHC approach will be presented and as an illustration of its use CHC results for a polymeric thin film will be discussed and compared with already existing data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brühwiler PA, Karis O, Mårtensson M (2002) Charge-transfer dynamics studied using resonant core spectroscopies. Rev Mod Phys 74(3):703–740

    Article  Google Scholar 

  2. Menzel D (2008) Ultrafast charge transfer at surfaces accessed by core electron spectroscopies. Chem Soc Rev 37(10):2212–2223

    Article  CAS  Google Scholar 

  3. Wang L, Chen W, Wee ATS (2008) Charge transfer across the molecule/metal interface using the core hole clock technique. Surf Sci Rep 63(11):465–486

    Article  CAS  Google Scholar 

  4. Schnadt J, O’Shea JN (2003) Excited-state charge transfer dynamics in systems of aromatic adsorbates on TiO2 studied with resonant core techniques. J Chem Phys 119(23):12462–12472

    Article  CAS  Google Scholar 

  5. Friedlein R, Braun S et al (2011) Ultra-fast charge transfer in organic electronic materials and at hybrid interfaces studied using the core-hole clock technique. J Electron Spectrosc Relat Phenom 183(1):101–106

    Article  CAS  Google Scholar 

  6. Asbury JB, Hao E et al (2001) Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J Phys Chem B 105(20):4545–4557

    Article  CAS  Google Scholar 

  7. Yeh AT, Shank CV et al (2000) Ultrafast electron localization dynamics following photo-induced charge transfer. Science 289(5481):935–938

    Article  CAS  Google Scholar 

  8. Matsuda I, Yamamoto S (2013) Time-resolved photoelectron spectroscopies using synchrotron radiation: past, present, and future. J Phys Soc Jpn 82(2):021003

    Article  Google Scholar 

  9. Sasaki TA, Baba Y et al (1994) Spectator and participator Auger transitions by resonant excitation of the Mo 2p3/2orbital inLi2MoO4, MoO3, and MoS2. Phys Rev B 50(21):15519–15526

    Article  CAS  Google Scholar 

  10. Vijayalakshmi S, Föhlisch A et al (2006) Surface projected electronic band structure and adsorbate charge transfer dynamics: Ar adsorbed on Cu(111) and Cu(100). Chem Phys Lett 427(1):91–95

    Article  CAS  Google Scholar 

  11. Föhlisch A, Feulner P et al (2005) Direct observation of electron dynamics in the attosecond domain. Nature 436:373

    Article  Google Scholar 

  12. Arantes C, Borges BGAL et al (2013) Femtosecond electron delocalization in poly(thiophene) probed by resonant auger spectroscopy. J Phys Chem C117(16):8208–8213

    Google Scholar 

  13. Garcia-Basabe Y, Borges BGAL et al (2013) The interplay of electronic structure, molecular orientation and charge transport in organic semiconductors: poly(thiophene) and poly(bithiophene). Org Electron 14(11):2980–2986

    Article  CAS  Google Scholar 

  14. Borges BGAL, Veiga AG et al (2016) Molecular orientation and ultrafast charge transfer dynamics studies on the P3HT:PCBM blend. J Phys Chem C120(43):25078–25082

    Google Scholar 

  15. Garcia-Basabe Y, Ceolin D et al (2018) Ultrafast interface charge transfer dynamics on P3HT/MWCNT nanocomposites probed by resonant Auger spectroscopy. RSC Adv 8(46):26416–26422

    Article  CAS  Google Scholar 

  16. Garcia-Basabe Y, Marchiori CFN et al (2014) Electronic structure, molecular orientation, charge transfer dynamics and solar cells performance in donor/acceptor copolymers and fullerene: experimental and theoretical approaches. J Appl Phys 115(13):134901

    Article  Google Scholar 

  17. Garcia-Basabe Y, Yamamoto NAD et al (2015) The effect of thermal annealing on the charge transfer dynamics of a donor-acceptor copolymer and fullerene: F8T2 and F8T2:PCBM. Phys Chem Chem Phys 17(17):11244–11251

    Article  CAS  Google Scholar 

  18. Garcia-basabe Y, Marchiori CFN et al (2015) Femtosecond electron delocalization in polymer: fullerene blend films. J Phys Conf Ser 635(12):122003

    Article  Google Scholar 

  19. Borges BGA, Holakoei S et al (2019) Molecular orientation and femtosecond charge transfer dynamics in transparent and conductive electrodes based on graphene oxide and PEDOT:PSS composites. Phys Chem Chem Phys 21(2):736–743

    Article  Google Scholar 

  20. http://xdb.lbl.gov/Section1/Table_1-1a.htm

  21. Walton J, Wincott P, Fairley N (2010) Peak fitting with CasaXPS: a casa pocket book, ISBN 978-0954953317

  22. Ikeura-Sekiguchi H, Sekiguchi T (2008) Unoccupied electronic states in polythiophene as probed by XAS and RAS. Surf Interface Anal 40:673–675

    Article  CAS  Google Scholar 

  23. Rocco MLM, Sekiguchi T et al (2006) Photon stimulated ion desorption from condensed thiophene photoexcited around the S1s-edge. J Vac Sci Technol A 24(6):2117–2121

    Article  CAS  Google Scholar 

  24. Yoshii K, Baba Y et al (1998) Resonant auger electron spectra at Si-, P-, S-, and Cl-1s thresholds of condensed molecules. Phys Status Solidi B 206(2):811–822

    Article  CAS  Google Scholar 

  25. Rocco ML, Sekiguchi T et al (2007) Photon stimulated ion desorption from condensed thiolane photoexcited around the S 1s-edge. J Electron Spectrosc Relat Phenom 24(6):115–118

    Article  Google Scholar 

  26. Campbell JL, Papp T (2001) Widths of the atomic K-N7 levels. At Data Nucl Data Tables 77:1–56

    Article  CAS  Google Scholar 

  27. Ikeura-Sekiguchi H, Sekiguchi T (2007) Attosecond electron delocalization in the conduction band through the phosphate backbone of genomic DNA. Phys Rev Lett 99:228102

    Article  Google Scholar 

  28. Ikeura-Sekiguchi H, Sekiguchi T (2010) Femto-and attosecond electron dynamics in 5′-Guanosine monophosphate interface as probed by resonant Auger spectroscopy. Surf Interface Anal 42:1085–1088

    Article  CAS  Google Scholar 

  29. Jaiswal M, Menon R (2006) Polymer electronic materials: a review of charge transport. Polym Int 55(12):1371–1384

    Article  CAS  Google Scholar 

  30. Dang MT, Hirsch L et al (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23(31):3597–3602

    Article  CAS  Google Scholar 

  31. Johansson FOL, Ivanović M et al (2018) Femtosecond and attosecond electron-transfer dynamics in PCPDTBT:PCBM bulk heterojunctions. J Phys Chem C 122(24):12605–12614

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by LNLS–National Synchrotron Light Laboratory, Brazil. The authors thank CNPq, CAPES and FAPERJ for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. M. Rocco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, B.G.A.L., Roman, L.S. & Rocco, M.L.M. Femtosecond and Attosecond Electron Transfer Dynamics of Semiconductors Probed by the Core-Hole Clock Spectroscopy. Top Catal 62, 1004–1010 (2019). https://doi.org/10.1007/s11244-019-01189-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01189-8

Keywords

Navigation