Skip to main content
Log in

Synthesis and Characterization of Graphite Oxide Derived TiO2-Carbon Composites as Potential Electrocatalyst Supports

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

TiO2-C (carbon) hybrid materials are promising electrocatalyst supports because the presence of TiO2 results in enhanced stability. Use of new types of carbonaceous materials such as reduced graphene oxide instead of traditional active carbon provides certain benefits. Although the rutile polymorph of TiO2 seems to have the most beneficial properties in these hybrid materials, the anatase type is more frequent in TiO2-rGO composites, especially in graphite oxide (GO) derived ones, as GO has several properties which may interfere with rutile formation. To explore and evaluate these peculiarities and their influence on the composite formation, we compared TiO2-C systems formulated with GO and Black Pearls (BP) carbon. Various physicochemical methods, such as attenuated total reflection infrared (ATR-IR)-, solid state NMR-, Raman- and X-ray photoelectron spectroscopy, X-ray powder diffraction (XRD), electron microscopy, etc. were used to characterize the samples from the different stages of our multistep sol–gel synthesis. Our experiments demonstrated that utilization of GO is indeed feasible for composite preparation, although its sodium contamination has to be removed during the synthesis. On the other hand, high temperature treatment and/or solvothermal treatment during composite synthesis resulted in decomposition of the functional groups of the GO and the functional properties of the final product were similar in case of both composites. However, Pt/TiO2-GO derived sample showed higher oxygen reduction reaction activity than Pt/TiO2-BP derived one. Based on the decrease of electrochemical surface area, the stability order was the following: Pt/C (commercial) < Pt/TiO2-BP derived C < Pt/TiO2-GO derived C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bharath G, Prakash J, Rambabu K et al (2021) Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere. Environ Pollut 281:116990. https://doi.org/10.1016/j.envpol.2021.116990

    Article  CAS  PubMed  Google Scholar 

  2. Elbakkay MH, El Rouby WMA, El-Dek SI et al (2018) S-TiO2/S-reduced graphene oxide for enhanced photoelectrochemical water splitting. Appl Surf Sci 439:1088–1102. https://doi.org/10.1016/j.apsusc.2018.01.070

    Article  CAS  Google Scholar 

  3. Yu J, Liu Z, Zhai L et al (2016) Reduced graphene oxide supported TiO2 as high performance catalysts for oxygen reduction reaction. Int J Hydrogen Energy 41:3436–3445. https://doi.org/10.1016/j.ijhydene.2015.12.192

    Article  CAS  Google Scholar 

  4. Zana A, Rüdiger C, Kunze-Liebhäuser J et al (2014) Core-shell TiO2@C: Towards alternative supports as replacement for high surface area carbon for PEMFC catalysts. Electrochim Acta 139:21–28. https://doi.org/10.1016/j.electacta.2014.07.002

    Article  CAS  Google Scholar 

  5. Li Y, Liu C, Liu Y et al (2015) Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells. J Power Sources 286:354–361. https://doi.org/10.1016/j.jpowsour.2015.03.155

    Article  CAS  Google Scholar 

  6. Zhao L, Wang ZB, Liu J et al (2015) Facile one-pot synthesis of Pt/graphene-TiO2 hybrid catalyst with enhanced methanol electrooxidation performance. J Power Sources 279:210–217. https://doi.org/10.1016/j.jpowsour.2015.01.023

    Article  CAS  Google Scholar 

  7. Zhuang W, He L, Zhu J et al (2015) TiO2 nanofibers heterogeneously wrapped with reduced graphene oxide as efficient Pt electrocatalyst supports for methanol oxidation. Int J Hydrogen Energy 40:3679–3688. https://doi.org/10.1016/j.ijhydene.2015.01.042

    Article  CAS  Google Scholar 

  8. Wu X, Zhuang W, Lu L et al (2017) Excellent performance of Pt-C/TiO2 for methanol oxidation: contribution of mesopores and partially coated carbon. Appl Surf Sci 426:890–896. https://doi.org/10.1016/j.apsusc.2017.07.219

    Article  CAS  Google Scholar 

  9. Kuriganova AB, Leontyev IN, Alexandrin AS et al (2017) Electrochemically synthesized Pt/TiO2-C catalysts for direct methanol fuel cell applications. Mendeleev Commun 27:67–69. https://doi.org/10.1016/j.mencom.2017.01.021

    Article  CAS  Google Scholar 

  10. Odetola C, Trevani LN, Easton EB (2017) Photo enhanced methanol electrooxidation: Further insights into Pt and TiO2 nanoparticle contributions. Appl Catal B Environ 210:263–275. https://doi.org/10.1016/j.apcatb.2017.03.027

    Article  CAS  Google Scholar 

  11. Fan Y, Yang Z, Huang P et al (2013) Pt/TiO2−C with hetero interfaces as enhanced catalyst for methanol electrooxidation. Electrochim Acta 105:157–161. https://doi.org/10.1016/j.electacta.2013.04.158

    Article  CAS  Google Scholar 

  12. Wang M, Wang Z, Wei L et al (2017) Catalytic performance and synthesis of a Pt/graphene-TiO2 catalyst using an environmentally friendly microwave-assisted solvothermal method. Chin J Catal 38:1680–1687. https://doi.org/10.1016/S1872-2067(17)62876-6

    Article  CAS  Google Scholar 

  13. Zhang H, Han X, Zhao Y (2017) Pd-TiO2 nanoparticles supported on reduced graphene oxide: green synthesis and improved electrocatalytic performance for methanol oxidation. J Electroanal Chem 799:84–91. https://doi.org/10.1016/j.jelechem.2017.05.02

    Article  CAS  Google Scholar 

  14. Li M, Bi YG, Xiang L et al (2020) Improved cathodic oxygen reduction and bioelectricity generation of electrochemical reactor based on reduced graphene oxide decorated with titanium-based composites. Bioresour Technol 296:122319. https://doi.org/10.1016/j.biortech.2019.122319

    Article  CAS  PubMed  Google Scholar 

  15. Shim J, Lee CR, Lee HK et al (2001) Electrochemical Characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolite fuel cell. J Power Source 102:172–171. https://doi.org/10.1016/S0378-7753(01)00817-5

    Article  CAS  Google Scholar 

  16. Zeng X, Wang Z, Meng N et al (2017) Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: ternary nanocomposites for accelerated photocatalytic water disinfection. Appl Catal B Environ 202:33–41. https://doi.org/10.1016/j.apcatb.2016.09.014

    Article  CAS  Google Scholar 

  17. Sravani B, Chandrashekar Y, Chandana PS et al (2020) Bimetallic PtCu-decorated reduced graphene oxide (RGO)-TiO2 nanocomposite for efficient oxygen reduction reaction. Synt Met 266:116433. https://doi.org/10.1016/j.synthmet.2020.116433

    Article  CAS  Google Scholar 

  18. Li F, Long L, Weng Y (2020) A Review on the contemporary development of composite materials comprising graphene/graphene derivatives. Adv Mater Sci Eng 2020:7915641. https://doi.org/10.1155/2020/7915641

    Article  Google Scholar 

  19. Szabó T, Tombácz E, Illés E et al (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon NY 44:537–545. https://doi.org/10.1016/j.carbon.2005.08.005

    Article  CAS  Google Scholar 

  20. Szabó T, Berkesi O, Forgó P et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749. https://doi.org/10.1021/cm060258+

    Article  CAS  Google Scholar 

  21. Lerf A, He H, Forster M et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482. https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  22. Zhang N, Yang MQ, Liu S et al (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377. https://doi.org/10.1021/acs.chemrev.5b00267

    Article  CAS  PubMed  Google Scholar 

  23. Park Y, Kang SH, Choi W (2011) Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys Chem Chem Phys 13:9425–9431. https://doi.org/10.1039/c1cp20697d

    Article  CAS  PubMed  Google Scholar 

  24. Nagaraju G, Manjunath K, Sarkar S et al (2015) TiO2-RGO hybrid nanomaterials for enhanced water splitting reaction dedicated to 108th Birthday (born April 1, 1907) of Dr. Sree Sree Sree Shivakumara Mahaswamiji, Siddaganga Matta, Tumakuru, Karnataka. India Int J Hydrogen Energy 40:12209–12216. https://doi.org/10.1016/j.ijhydene.2015.07.094

    Article  CAS  Google Scholar 

  25. Szabó T, Veres Á, Cho E et al (2013) Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloids Surf A Physicochem Eng ASP 433:230–239. https://doi.org/10.1016/j.colsurfa.2013.04.063

    Article  CAS  Google Scholar 

  26. Majrik K, Turcsányi Á, Pászti Z et al (2018) Graphite oxide-TiO2 nanocomposite type photocatalyst for methanol photocatalytic reforming reaction. Top Catal 61:1323–1334. https://doi.org/10.1007/s11244-018-0989-z

    Article  CAS  Google Scholar 

  27. Zhang X, Liu Q, Shi X et al (2018) TiO2 nanoparticles-reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J Mater Chem A 6:17303–17306. https://doi.org/10.1039/c8ta05627g

    Article  CAS  Google Scholar 

  28. Qu Y, Gao Y, Kong F et al (2013) Pt−rGO−TiO2 nanocomposite by UV photoreduction method as promising electrocatalyst for methanol oxidation. Int J Hydrogen Energy 38:12310–12317. https://doi.org/10.1016/j.ijhydene.2013.07.038

    Article  CAS  Google Scholar 

  29. Yuan W, Li J, Wang L et al (2014) Nanocomposite of N-doped TiO2 nanorods and graphene as an effective electrocatalyst for the oxygen reduction reaction. ACS Appl Mater Interfaces 6:21978–21985. https://doi.org/10.1021/am507890h

    Article  CAS  PubMed  Google Scholar 

  30. Cai Z, Bu X, Wang P et al (2019) Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J Mater Chem A 7:5069–5089. https://doi.org/10.1039/c8ta11273h

    Article  CAS  Google Scholar 

  31. Xie X, Chen S, Ding W et al (2013) An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem Commun 49:10112–10114. https://doi.org/10.1039/c3cc44428g

    Article  CAS  Google Scholar 

  32. Peera SG, Liu C, Shim J et al (2021) MXene (Ti3C2Tx) supported electrocatalysts for methanol and ethanol electrooxidation: a review. Ceram Int. https://doi.org/10.1016/j.ceramint.2021.07.075

    Article  Google Scholar 

  33. Vass Á, Borbáth I, Pászti Z et al (2017) Effect of Mo incorporation on the electrocatalytic performance of Ti–Mo mixed oxide–carbon composite supported Pt electrocatalysts. React Kinet Mech Catal 121:141–160. https://doi.org/10.1007/s11144-017-1155-5

    Article  CAS  Google Scholar 

  34. Vass Á, Borbáth I, Bakos I et al (2019) Stability issues of CO tolerant Pt-based electrocatalysts for polymer electrolyte membrane fuel cells: comparison of Pt/Ti0.8Mo0.2O2–C with PtRu/C. React Kinet Mech Catal 126:679–699. https://doi.org/10.1007/s11144-018-1512-z

    Article  CAS  Google Scholar 

  35. Borbáth I, Zelenka K, Vass Á et al (2021) CO tolerant Pt electrocatalysts for PEM fuel cells with enhanced stability against electrocorrosion. Int J Hydrogen Energy 46:13534–13547. https://doi.org/10.1016/j.ijhydene.2020.08.002

    Article  CAS  Google Scholar 

  36. Borbáth I, Tálas E, Pászti Z et al (2021) Investigation of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts: effect of the type of carbonaceous materials. Appl Catal A Gen 620:118155. https://doi.org/10.1016/j.apcata.2021.118155

    Article  CAS  Google Scholar 

  37. Gubán D, Borbáth I, Pászti Z et al (2015) Preparation and characterization of novel Ti0.7W0.3O2-C composite materials for Pt-based anode electrocatalysts with enhanced CO tolerance. Appl Catal B-Environ 174:455–470. https://doi.org/10.1016/j.apcatb.2015.03.031

    Article  CAS  Google Scholar 

  38. Odetola C, Easton EB, Trevani L (2016) Investigation of TiO2/carbon electrocatalyst supports prepared using glucose as a modifier. Int J Hydrogen Energy 41:8199–8208. https://doi.org/10.1016/j.ijhydene.2015.10.035

    Article  CAS  Google Scholar 

  39. Hakamizadeh M, Afshar S, Tadjarodi A et al (2014) Improving hydrogen production via water splitting over Pt/TiO2/activated carbon nanocomposite. Int J Hydrogen Energy 39:7262–7269. https://doi.org/10.1016/j.ijhydene.2014.03.048

    Article  CAS  Google Scholar 

  40. Odetola C, Trevani L, Easton EB (2015) Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier. J Power Sources 294:254–263. https://doi.org/10.1016/j.jpowsour.2015.06.066

    Article  CAS  Google Scholar 

  41. Guha A, Lu W, Zawodzinski TA, Schiraldi DA (2007) Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon NY 45:1506–1517. https://doi.org/10.1016/j.carbon.2007.03.023

    Article  CAS  Google Scholar 

  42. Zhang Q, He YQ, Chen XG et al (2011) Structure and photocatalytic properties of TiO2-graphene oxide intercalated composite. Chin Sci Bull 56:331–339. https://doi.org/10.1007/s11434-010-3111-x

    Article  CAS  Google Scholar 

  43. Liang Y, Wang H, Casalongue HS et al (2010) TiO2 Nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705. https://doi.org/10.1007/s12274-010-0033-5

    Article  CAS  Google Scholar 

  44. Xu C, Wang X, Zhu J (2008) Graphene—metal particle nanocomposites. J Phys Chem C 112:19841–19845. https://doi.org/10.1021/jp807989b

    Article  CAS  Google Scholar 

  45. Kou R, Shao Y, Wang D et al (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954–957. https://doi.org/10.1016/j.elecom.2009.02.033

    Article  CAS  Google Scholar 

  46. Rao CV, Reddy ALM, Ishikawa Y et al (2011) Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles. Carbon NY 49:931–936. https://doi.org/10.1016/j.carbon.2010.10.056

    Article  CAS  Google Scholar 

  47. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  48. Bourikas K, Kordulis C, Lycourghiotis A (2014) Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem Rev 114:9754–9823. https://doi.org/10.1021/cr300230q

    Article  CAS  PubMed  Google Scholar 

  49. Wu J, Xu M, Lei S et al (2020) High electrocatalytic activity and stability of PtAg supported on rutile TiO2 for methanol oxidation. Int J Hydrogen Energy 45:12815–12821. https://doi.org/10.1016/j.ijhydene.2020.03.015

    Article  CAS  Google Scholar 

  50. Gudkov MV, Bazhenov SL, Bekhli LS et al (2018) Explosive reduction of graphite oxide. Russ J Phys Chem B 12:860–868. https://doi.org/10.1134/S199079311805007X

    Article  CAS  Google Scholar 

  51. Boehm H-P, Scholz W (1965) Der “Verpuffungspunkt” des graphitoxids. ZAAC—J Inorg Gen Chem 335:74–79. https://doi.org/10.1002/zaac.19653350107

    Article  CAS  Google Scholar 

  52. Szabó T, Szeri A, Dékány I (2005) Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon NY 43:87–94. https://doi.org/10.1016/j.carbon.2004.08.025

    Article  CAS  Google Scholar 

  53. Zhang H, Lv X, Li Y et al (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. https://doi.org/10.1021/nn901221k

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2 graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 graphene truly different from other TiO2 carbon composite materials? ACS Nano 4:7303–7314. https://doi.org/10.1021/nn1024219

    Article  CAS  PubMed  Google Scholar 

  55. Pan X, Zhao Y, Liu S et al (2012) Nanoparticle composite photocatalysts. ACS Appl Mater Interfaces 4:3944–3950. https://doi.org/10.1021/am300772t

    Article  CAS  PubMed  Google Scholar 

  56. Leong KH, Sim LC, Bahnemann D et al (2015) Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. APL Mater 3:104503. https://doi.org/10.1063/1.4926454

    Article  CAS  Google Scholar 

  57. Zeng P, Zhang Q, Zhang X, Peng T (2012) Graphite oxide-TiO2 nanocomposite and its efficient visible-light-driven photocatalytic hydrogen production. J Alloys Compd 516:85–90. https://doi.org/10.1016/j.jallcom.2011.11.140

    Article  CAS  Google Scholar 

  58. Vasilaki E, Georgaki I, Vernardou D et al (2015) Ag-loaded TiO2 /reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl Surf Sci 353:865–872. https://doi.org/10.1016/j.apsusc.2015.07.056

    Article  CAS  Google Scholar 

  59. Vass Á, Borbáth I, Bakos I et al (2018) Novel Pt electrocatalysts: multifunctional composite supports for enhanced corrosion resistance and improved CO tolerance. Top Catal 61:1300–1312. https://doi.org/10.1007/s11244-018-0988-0

    Article  CAS  Google Scholar 

  60. Bard AJ (1976) Electroanalytical chemistry: a series of advances, vol 9. M. Dekker, New York, Basel

    Google Scholar 

  61. Borbáth I, Bakos I, Pászti Z et al (2021) Design of SnPt/C cathode electrocatalysts with optimized Sn/Pt surface composition for potential use in polymer electrolyte membrane fuel cells. Catal Today 366:20–30. https://doi.org/10.1016/j.cattod.2020.06.029

    Article  CAS  Google Scholar 

  62. Roy N, Leung KT, Pradhan D (2015) Nitrogen doped reduced graphene oxide based Pt-TiO2 nanocomposites for enhanced hydrogen evolution. J Phys Chem C 119:19117–19125. https://doi.org/10.1021/acs.jpcc.5b03870

    Article  CAS  Google Scholar 

  63. Wang R, Tang Y, Xu M et al (2018) Transfer hydrogenation of aldehydes and ketones with isopropanol under neutral conditions catalyzed by a metal-ligand bifunctional catalyst [Cp∗Ir(2,2′-bpyO)(H2O)]. J Org Chem 83:2274–2281. https://doi.org/10.1021/acs.joc.7b03174

    Article  CAS  PubMed  Google Scholar 

  64. Talyzin AV, Solozhenko VL, Kurakevych OO et al (2008) Colossal pressure-induced lattice expansion of graphite oxide in the presence of water. Angew Chem—Int Ed 47:8268–8271. https://doi.org/10.1002/anie.200802860

    Article  CAS  Google Scholar 

  65. Yamada Y, Yasuda H, Murota K et al (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198. https://doi.org/10.1007/s10853-013-7630-0

    Article  CAS  Google Scholar 

  66. Bauer T, Laing D, Kröner U et al (2009) Sodium nitrate for high temperature latent heat storage. In: 11th Int Conf Therm Energy Storage 1–8

  67. Navio JA, Macias M, Justo A et al (1992) Thermal decomposition of sodium nitrite and sodium nitrate pre-adsorbed on TiO2 surfaces. J Therm Anal 38:673–682. https://doi.org/10.1007/BF01979396

    Article  CAS  Google Scholar 

  68. Sebestyén Z, May Z, Réczey K et al (2011) The effect of alkaline pretreatment on the thermal decomposition of hemp. J Therm Anal Calorim 105:1061–1069. https://doi.org/10.1007/s10973-010-1056-6

    Article  CAS  Google Scholar 

  69. Kudin KN, Ozbas B, Schniepp HC et al (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  PubMed  Google Scholar 

  70. Tian Z, Liu C, Li Q et al (2015) Nitrogen- and oxygen-functionalized carbon nanotubes supported Pt-based catalyst for the selective hydrogenation of cinnamaldehyde. Appl Catal A 506:134–142. https://doi.org/10.1016/j.apcata.2015.08.023

    Article  CAS  Google Scholar 

  71. Sing KSW, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782. https://doi.org/10.1260/0263617053499032

    Article  CAS  Google Scholar 

  72. Pantea D, Darmstadt H, Kaliaguine S et al (2003) Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Appl Surf Sci 217:181–193. https://doi.org/10.1016/S0169-4332(03)00550-6

    Article  CAS  Google Scholar 

  73. Yazici MS, Dursun S, Borbáth I, Tompos A (2021) Reformate gas composition and pressure effect on CO tolerant Pt/Ti0.8Mo0.2O2–C electrocatalyst for PEM fuel cells. Int J Hydrogen Energy 46:13524–13533. https://doi.org/10.1016/j.ijhydene.2020.08.226

    Article  CAS  Google Scholar 

  74. Huang SY, Ganesan P, Popov BN (2011) Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Appl Catal B: Environ 102:71–77. https://doi.org/10.1016/j.apcatb.2010.11.026

    Article  CAS  Google Scholar 

  75. von Kraemer S, Wikander K, Lindbergh G et al (2008) Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell. J Power Sources 180:185–190. https://doi.org/10.1016/j.jpowsour.2008.02.023

    Article  CAS  Google Scholar 

  76. Jiang ZZ, Gu DM, Wang ZB et al (2011) Effects of anatase TiO2 with different particle sizes and contents on the stability of supported Pt catalysts. J Power Sources 196:8207–8215. https://doi.org/10.1016/j.jpowsour.2011.05.063

    Article  CAS  Google Scholar 

  77. Huang SY, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899. https://doi.org/10.1021/ja904810h

    Article  CAS  PubMed  Google Scholar 

  78. Ioroi T, Siroma Z, Fujiwara N et al (2005) Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem commun 7:183–188. https://doi.org/10.1016/j.elecom.2004.12.007

    Article  CAS  Google Scholar 

  79. Yoo SJ, Jeon TY, Lee KS et al (2010) Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem Commun 46:794–796. https://doi.org/10.1039/b916335b

    Article  CAS  Google Scholar 

  80. Ercelik M, Ozden A, Seker E, Colpan CO (2017) Characterization and performance evaluation of Pt-Ru/C-TiO2 anode electrocatalyst for DMFC applications. Int J Hydrogen Energy 42:21518–21529. https://doi.org/10.1016/j.ijhydene.2016.12.020

    Article  CAS  Google Scholar 

  81. Chen C-S, Pan F-M (2009) Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation. Appl Catal B 91:663–669. https://doi.org/10.1016/j.apcatb.2009.07.008

    Article  CAS  Google Scholar 

  82. Zhao X, Zhu J, Liang L et al (2012) Enhanced activity of Pt nano-crystals supported on a novel TiO2@Ndoped C nano-composite for methanol oxidation reaction. J Mater Chem 22:19718–19725. https://doi.org/10.1039/c2jm33926a

    Article  CAS  Google Scholar 

  83. Song HQ, Qiu XP, Li FS (2008) Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electro-oxidation. Electrochim Acta 53:3708–3713. https://doi.org/10.1016/j.electacta.2007.11.080

    Article  CAS  Google Scholar 

  84. Maillard F, Schreier S, Hanzlik M et al (2005) Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys Chem Chem Phys 7:375–383. https://doi.org/10.1039/b411377b

    Article  CAS  Google Scholar 

  85. Maillard F, Peyrelade E, Soldo-Olivier Y et al (2007) Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochim Acta 52:1958–1967. https://doi.org/10.1016/j.electacta.2006.08.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research within project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. Project No. NNE130004 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the TR-NN-17 funding scheme. Project No. NNE 131270 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary financed under the M-ERA.NET-2018 funding scheme. The financial supports by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences are gratefully acknowledged (Erzsébet Illés). The authors also thank Dr. Ágnes Szegedi and Dr. Szilvia Klébert for the nitrogen physisorption measurements, and Dr. Zoltán May for the ICP-OES measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mihaela Florea or Emília Tálas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4716 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyubov, I., Borbáth, I., Pászti, Z. et al. Synthesis and Characterization of Graphite Oxide Derived TiO2-Carbon Composites as Potential Electrocatalyst Supports. Top Catal (2021). https://doi.org/10.1007/s11244-021-01513-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-021-01513-1

Keywords

Navigation