Skip to main content
Log in

Dual-Zone Catalyst for Ozone-Assisted Hydrocarbon Abatement at Low Temperatures

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A dual-zone catalytic systems 10%Mn/Al2O3||10%Ag/Al2O3 has been developed for the low temperature light alkanes oxidation in presence of ozone. The upstream bed (10%Mn/Al2O3) is responsible for the ozone catalytic oxidation (OZCO) of light alkanes, while the downstream bed (10%Ag/Al2O3) provide effective carbon monoxide abatement and O3-slip decomposition. The system demonstrates effective removal of hydrocarbons at 100 °C for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang H, Xu Y, Feng Q, Leung DYC (2015) Catal Sci Technol 5:2649–2669

    Article  CAS  Google Scholar 

  2. Heck RM, Farrauto JR, Gulati ST (2009) Catalytic Air Pollution Control. Wiley, New Jersey

    Book  Google Scholar 

  3. Liu B, Ji J, Zhang B, Huang W, Gan Y, Leung DYC, Huang H (2022) J Hazard Mater 422:126847

    Article  CAS  PubMed  Google Scholar 

  4. Harling AM, Glover DJ, Whitehead JC, Zhang K (2009) Appl Catal B 90:157–161

    Article  CAS  Google Scholar 

  5. Ryu HW, Song MY, Park JS, Kim JM, Jung S-C, Song JH, Kim B-J, Park Y-K (2019) Environ Res 172:649–657

    Article  CAS  PubMed  Google Scholar 

  6. Aghbolaghy M, Soltan J, Chen N (2017) Catal Lett 147:2421–2433

    Article  CAS  Google Scholar 

  7. Einaga H, Futamura S (2004) J Catal 227:304–312

    Article  CAS  Google Scholar 

  8. Einaga H, Ogata A (2010) Environ Sci Technol 44:2612–2617

    Article  CAS  PubMed  Google Scholar 

  9. Konova P, Naydenov A, Nikolov PI, Kumar N (2017) J Porous Mater 25:1301–1308

    Article  Google Scholar 

  10. Gopi T, Swetha G, Shekar SC, Ramakrishna C, Gupta AK (2017) J Environ Chem Eng 5:4031–4040

    Article  CAS  Google Scholar 

  11. Aghbolaghy M, Ghavami M, Soltan J, Chen N (2019) J Ind Eng Chem 77:118–127

    Article  CAS  Google Scholar 

  12. Mytareva AI, Mashkovsky IS, Kanaev SA, Bokarev DA, Baeva GN, Kazakov AV, Stakheev AY (2021) Catalysts 11 – 4:506

  13. Tou A, Kim H-H, Einaga H, Teramoto Y, Ogata A (2019) Chem Eng J 355:380–389

    Article  CAS  Google Scholar 

  14. Einaga H, Futamura S (2004) React Kinet Catal Lett 81:121–128

    Article  CAS  Google Scholar 

  15. Mytareva AI, Bokarev DA, Baeva GN, Belyankin AY, Stakheev AY (2019) Top Catal 62:192–197

    Article  CAS  Google Scholar 

  16. Kim H-H, Ogata A (2011) Eur Phys J Appl Phys 55:13806

    Article  Google Scholar 

  17. Kim H-H, Sugasawa M, Hirata H, Teramoto Y, Kosuge K, Negishi N, Ogata A (2013) Plasma Chem Plasma Process 33:1083–1098

    Article  CAS  Google Scholar 

  18. Huang H, Huang W, Xu Y, Ye X, Wu M, Shao Q, Ou G, Peng Z, Shi J, Chen J, Feng Q, Zan Y, Huang H, Hu P (2015) Catal Today 258:627–633

    Article  CAS  Google Scholar 

  19. Kachala VV, Khemchyan LL, Kashin AS, Orlov NV, Grachev AA, Zalesskiy SS, Ananikov VP (2013) Russ Chem Rev 82:648–685

    Article  Google Scholar 

  20. Paun C, Stowik G, Lewin E, Sa J (2016) RSC Adv 6:87564–87568

    Article  CAS  Google Scholar 

  21. Rezaei E, Soltan J, Chen N (2013) Appl Catal B 136–137:239–247

    Article  Google Scholar 

  22. Chen G, Wang Z, Lin F, Zhang Z, Yu H, Yan B, Wang Z (2020) J Hazard Mater 391:122218

    Article  CAS  PubMed  Google Scholar 

  23. Naydenov A, Mehandjiev D (1993) Appl Catal A 97:17–22

    Article  CAS  Google Scholar 

  24. Oyama ST, Li W, Zhang W (1999) Stud Surf Sci Catal 121:105

    Article  CAS  Google Scholar 

  25. Xi Y, Reed C, Lee Y-K (2005) J Phys Chem B 109:17587–17596

    Article  CAS  PubMed  Google Scholar 

  26. Reed C, Xi Y, Oyama ST (2005) J Catal 235:378–392

    Article  CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.I.M. and A.Y.S.; investigation, D.A.B. and S.A.K.; catalyst preparation and characterization, G.N.B.; writing—original draft preparation, A.I.M.; writing—review and editing, A.Y.S. and D.A.B.; visualization, A.I.M.; supervision, A.Y.S. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Alina I. Mytareva or Alexander Yu. Stakheev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mytareva, A.I., Kanaev, S.A., Bokarev, D.A. et al. Dual-Zone Catalyst for Ozone-Assisted Hydrocarbon Abatement at Low Temperatures. Top Catal 66, 1057–1063 (2023). https://doi.org/10.1007/s11244-023-01810-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01810-x

Keywords

Navigation