Skip to main content
Log in

Recent Advances in Plasmonic Enhanced Nanocatalyst for Oxidation of Alcohol

  • Review Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Plasmonic nanomaterials (PNMs) and catalytically active surfaces, when combined, provide novel opportunities for a wide range of potential applications of catalysis. When stimulated by the right kind of light, surface plasmons can be put to use to either directly cause or indirectly facilitate a wide variety of chemical reactions. PNMs are currently the center of extensive research that is being conducted for the purpose of determining whether or not they could be utilized to improve the efficiency of catalytic reactions. This is due to the fact that PNMs have the alluring ability to interact with light in a powerful fashion. These structures exhibit the singular property of localised surface plasmon resonance, which transforms light of a particular wavelength ranges into hot charge carriers, together with high local electromagnetic fields, or heat, which may all contribute in different ways to increasing the reaction efficiency. Plasmon-mediated catalysts, which go beyond the highly influential application of supported gold nanomaterials (NMs) to photo-oxidation reactions, can be utilised to create a greater variety of visible-light induced catalysts by combining various metals and supports with available Au, Ag, and Cu NMs and PNMs photocatalysts. Plasmon-mediated catalysts go beyond the highly influential application of supported gold nanomaterials (NMs) to photo-oxidation reactions. This would make it possible to develop a greater diversity of photocatalysts, which are catalysts that can be powered by visible light. This review will focus on the PNMs-based catalyst for alcohol oxidation, which will be addressed within the framework of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tojo G, Fernández M (2000) Oxidation of alcohols to Aldehydes and Ketones. Springer, New York

    Google Scholar 

  2. Brink GJT, Arends IWCE, Sheldon RA (2000) Green, catalytic oxidation of alcohols in water. Science 287:1636–1639

    Article  ADS  Google Scholar 

  3. Sarbajna A, Dutta I, Daw P, Dinda S, Rahaman SMW, Sarkar A, Bera JK (2017) Catalytic conversion of alcohols to carboxylic acid salts and hydrogen with alkaline water. ACS Catal 7:2786–2790

    Article  CAS  Google Scholar 

  4. Gunanathan C, Ben-David Y, Milstein D (2007) Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317:790–792

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Thiyagarajan S, Gunanathan C (2019) Catalytic cross-coupling of secondary alcohols. J Am Chem Soc 141:3822–3827

    Article  CAS  PubMed  Google Scholar 

  6. Gowrisankar S, Neumann H, Beller M (2011) General and selective palladium-catalyzed oxidative esterification of alcohols. Angew Chem Int Ed 50:5139–5143

    Article  CAS  Google Scholar 

  7. Cheng B, Wang L, Gao S (2015) Recent advances in aerobic oxidation of alcohols and amines to imines. ACS Catal 5:5851–5876

    Article  Google Scholar 

  8. Parmeggiani C, Matassini C, Cardona F (2017) A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports. Green Chem 19:2030–2050

    Article  CAS  Google Scholar 

  9. Jiao N, Stahl SS (2019) Green oxidation in organic synthesis. Wiley, Weinheim

    Book  Google Scholar 

  10. Cardona F, Parmeggiani C (2014) Transition metal catalysis in aerobic alcohol oxidation synthesis RSC green chemistry series. RSC Publishers, Cambridge

    Book  Google Scholar 

  11. Tojo G, Fernandez MI (2006) Oxidation of alcohols to aldehydes and ketones: a guide to current practice. Springer, Berlin, pp 241–253

    Google Scholar 

  12. Panda P, Chakroborty S (2022) Optical sensor technology and its application in detecting environmental effluents: a review. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2098480

    Article  Google Scholar 

  13. Nath N, Kumar A, Chakroborty S, Soren S, Barik A, Pal K, de Souza FG Jr (2023) Carbon nanostructure embedded novel sensor implementation for detection of aromatic volatile organic compounds: an organized review. ACS omega 8(5):4436–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grunwaldt JD, Kiener C, Wögerbauer C, Baiker A (1999) Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids. J Catal 181:223–227

    Article  CAS  Google Scholar 

  15. Carnes CL, Klabunde KJ (2000) Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide. Langmuir 16:3764–3772

    Article  CAS  Google Scholar 

  16. Pal T, Jana NR, Sau TK (1997) Nucleophile induced dissolution of gold. Corros Sci 39:981–985

    Article  CAS  Google Scholar 

  17. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30(8):1121–1132

    Article  CAS  Google Scholar 

  18. de Aberasturi J, Serrano-Montes D, Belén A, Liz-Marzán LM (2015) Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mater 3:602–617

    Article  Google Scholar 

  19. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Matter 9(3):205–213

    Article  CAS  ADS  Google Scholar 

  20. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118

    Article  CAS  Google Scholar 

  21. Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196

    Article  CAS  PubMed  Google Scholar 

  22. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  PubMed  Google Scholar 

  23. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15(1):16–25

    Article  CAS  Google Scholar 

  25. Naldoni A, Riboni F, Guler U, Boltasseva A, Shalaev VM, Kildishev AV (2016) Solar powered plasmon-enhanced heterogeneous catalysis. Nanophotonics 5(1):112–133

    Article  CAS  Google Scholar 

  26. Sharma G, Kumar A, Sharma S et al (2019) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci 31:257–269

    Article  Google Scholar 

  27. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4:61–78

    Article  CAS  Google Scholar 

  28. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Wang D, Pillai SC, Ho S-H et al (2018) Plasmonic-based nanomaterials for environmental remediation. Appl Catal B Environ 237:721–741

    Article  CAS  Google Scholar 

  30. Kavitha R, Kumar SG (2020) Review on bimetallic-deposited TiO2: preparation methods, charge carrier transfer pathways and photocatalytic applications. Chem Pap 74:717–756

    Article  CAS  Google Scholar 

  31. Sytwu K, Vadai M, Dionne JA (2019) Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis. Adv Phys X 4:1619480

    CAS  Google Scholar 

  32. Srinoi P, Chen Y-T, Vittur V et al (2018) Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Appl Sci 8:25

    Article  Google Scholar 

  33. Chakroborty S, Nath N, Soren S, Barik A, Kaur K (2023) Plasmonic-based TiO2 and TiO2 nanoparticles for photocatalytic CO2 to methanol conversion in energy applications: current status and future prospects. Top Catal. https://doi.org/10.1007/s11244-023-01816-5

    Article  Google Scholar 

  34. Polshettiwar V, Luque R, Fihri A, Zhu HB, Bouhrara M, Bassett JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111:3036–3075

    Article  CAS  PubMed  Google Scholar 

  35. Hudson R, Feng YT, Varma RS, Moores A (2014) Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem 16:4493–4505

    Article  CAS  Google Scholar 

  36. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858–3887

    Article  CAS  PubMed  Google Scholar 

  37. Subramanian P, Meziane D, Wojcieszak R, Dumeignil F, Boukherroub R, Szunerits S (2018) Plasmon-induced electrocatalysis with multi-component nanostructures. Materials 12(1):43

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  38. Li S, Miao P, Zhang Y, Wu J, Zhang B, Du Y, Han X, Sun J, Xu P (2021) Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv Mater 33(6):2000086

    Article  CAS  Google Scholar 

  39. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754

    Article  CAS  Google Scholar 

  40. Nomura KI, Gopinath SCB, Lakshmipriya T, Fukuda N, Wang X, Fujimaki M (2013) An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing. Nat Commun 4(1):2855

    Article  PubMed  ADS  Google Scholar 

  41. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  42. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961

    Article  CAS  PubMed  Google Scholar 

  43. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127(20):7632–7637

    Article  CAS  PubMed  Google Scholar 

  44. Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Article  PubMed  Google Scholar 

  45. Landry MJ, Gellé A, Meng BY, Barrett CJ, Moores A (2017) Surface-plasmon-mediated hydrogenation of carbonyls catalyzed by silver nanocubes under visible light. ACS Catal 7(9):6128–6133

    Article  CAS  Google Scholar 

  46. Han P, Martens W, Waclawik ER, Sarina S, Zhu H (2018) Metal nanoparticle photocatalysts: synthesis, characterization, and application. Part Part Syst Char 35(6):1700489

    Article  Google Scholar 

  47. Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A (2019) Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem rev 120(2):986–1041

    Article  PubMed  Google Scholar 

  48. Gellé A, Moores A (2019) Plasmonic nanoparticles: photocatalysts with a bright future. Curr Opin Green Sustain Chem 15:60–66

    Article  Google Scholar 

  49. Zhang K, Wang C, Guo S, Li S, Wu Z, Hata S, Du Y (2023) Photoelectrocatalytic oxidation of ethylene glycol on trimetallic PdAgCu nanospheres enhanced by surface plasmon resonance. J Colloid Interface. https://doi.org/10.1016/j.jcis.2023.01.055

    Article  Google Scholar 

  50. Verma P, Mori K, Kuwahara Y, Cho SJ, Yamashita H (2020) Synthesis of plasmonic gold nanoparticles supported on morphology-controlled TiO2 for aerobic alcohol oxidation. Catal Today 352:255–261. https://doi.org/10.1016/j.cattod.2019.10.014

    Article  CAS  Google Scholar 

  51. Sun H, Chen S, Yang W, Wang L, Tang R, Zhang X, Huang J (2021) Plasmon-enhanced alcohol oxidations over porous carbon nanosphere-supported palladium and gold bimetallic nanocatalyst. Appl Catal B Environ 292:120151

    Article  CAS  Google Scholar 

  52. Wang C, Wu Y, Wang X, Zou L, Zou Z, Yang H (2016) Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation. Electrochim Acta 220:628–634

    Article  CAS  Google Scholar 

  53. Yu X, Luo Z, Zhang T, Tang P, Li J, Wang X, Llorca J, Arbiol J, Liu J, Cabot A (2020) Stability of Pd3Pb nanocubes during electrocatalytic ethanol oxidation. Chem Mater 32:2044–2052

    Article  CAS  Google Scholar 

  54. Chen LY, Chen N, Hou Y, Wang ZC, Lv SH, Fujita T, Jiang JH, Hirata A, Chen MW (2013) Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells. ACS Catal 3:1220–1230

    Article  CAS  Google Scholar 

  55. Tang C, He Z, Liu Y, He X, Chen G, Xie C, Huang J (2023) AuPd nanoporous dendrites: high electrocatalytic activity and surface plasmon-enhanced stability for ethanol electrooxidation. Chem Eng J 453:139962

    Article  CAS  Google Scholar 

  56. Rasmussen M, Serov A, Artyushkova K, Chen D, Rose TC, Atanassov P, Minteer SD (2019) Enhancement of electrocatalytic oxidation of glycerol by plasmonics. Chem Electro Chem 6(1):241–245

    CAS  Google Scholar 

  57. Wang J, Guo L, Pan B, Jin T, Li Z, Tang Q, Chen F (2023) Plasmon-driven methanol oxidation on PtAg nanoalloys prepared by improved pulsed laser deposition. Faraday Discuss 242:499–521

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Biswas R, Singh S, Ahmed I, Patil RA, Ma YR, Haldar KK (2021) Rational design of bimetallic Au/Cu nanostructure: an efficient catalyst for methanol oxidation. ChemNanoMat 7(2):158–164

    Article  CAS  Google Scholar 

  59. Kumar A, Reddy KL, Kumar S, Kumar A, Sharma V, Krishnan V (2018) Rational design and development of lanthanide-doped NaYF4@CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible–near-infrared broadband spectrum. ACS Appl Mater Interfaces 10(18):15565–15581

    Article  CAS  PubMed  Google Scholar 

  60. Kumar A, Choudhary P, Krishnan V (2022) Selective and efficient aerobic oxidation of benzyl alcohols using plasmonic Au-TiO2: influence of phase transformation on photocatalytic activity. Appl Surf Sci 578:151953

    Article  CAS  Google Scholar 

  61. Zhang K, Wang C, You H, Zou B, Guo S, Li S, Du Y (2022) Advanced plasmon-driven ethylene glycol oxidation over 3D ultrathin Lotus-like PdCu nanosheets. Chem Eng J 438:135666

    Article  CAS  Google Scholar 

  62. Asapu R, Claes N, Bals S et al (2017) Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis. Appl Catal B Environ 200:31–38

    Article  CAS  Google Scholar 

  63. Asapu R, Claes N, Ciocarlan R-G et al (2019) Electron transfer and near-field mechanisms in plasmonic gold-nanoparticle-modified TiO2 photocatalytic systems. ACS Appl Nano Mater 2:4067–4074

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhendu Chakroborty or Nilima Priyadarsini Mishra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, N., Chakroborty, S., Pal, K. et al. Recent Advances in Plasmonic Enhanced Nanocatalyst for Oxidation of Alcohol. Top Catal 67, 192–202 (2024). https://doi.org/10.1007/s11244-023-01839-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01839-y

Keywords

Navigation