Skip to main content
Log in

The 5 untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The structure and function of untranslated mRNA leader sequences and their role in controlling gene expression remains poorly understood. Previous research has suggested that the 5′ untranslated region (5′UTR) of the Vigna radiata aminocyclopropane-1-carboxylate synthase synthase (VR-ACS1) gene may function as a translational enhancer in plants. To test such hypothesis we compared the translation enhancing properties of three different 5′UTRs; those from the VR-ACS1, the chlorophyll a/b binding gene from petunia (Cab22L; a known translational enhancer) and the Vigna radiata pectinacetylesterase gene (PAE; used as control). Identical constructs in which the coding region of the β-glucuronidase (GUS) gene was fused to each of the three 5′UTRs and placed under the control of the cauliflower mosaic virus 35S promoter were prepared. Transient expression assays in tobacco cell cultures and mung bean leaves showed that the VR-ACS1 and Cab22L 5′UTRs directed higher levels of GUS activity than the PAE 5′UTR. Analysis of transgenic Arabidopsis thaliana seedlings, as well as different tissues from mature plants, confirmed that while transcript levels were equivalent for all constructs, the 5′UTRs from the VR-ACS1 and Cab22L genes can increase GUS activity twofold to fivefold compared to the PAE 5′UTR, therefore confirming the translational enhancing properties of the VR-ACS1 5′UTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

Cab22L:

Chlorophyll a/b binding

CaMV:

Cauliflower mosaic virus

GUS:

β-Glucuronidase

MUG:

4-Methylumbelliferyl-β-d-glucuronide

PAE:

Pectinacetylesterase

UTR:

Untranslated region

VR-ACS1:

Vigna radiata aminocyclopropane-1-carboxylate synthase

References

  • Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11

    Article  CAS  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  • Breton C, Bordenave M, Richard L, Pernollet JC, Huet JC, Perez S, Goldberg R (1996) PCR cloning and expression analysis of a cDNA encoding a pectinacetylesterase from Vigna radiata L. FEBS Lett 388:139–142

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Balint-Kurti PJ, Harpster MH, Palys JM, Oeller PW, Gutterson N (2003) Inverted repeat of a heterologous 3′-untranslated region for high-efficiency, high-throughput gene silencing. Plant J 33:793–800

    Article  CAS  PubMed  Google Scholar 

  • Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang KL, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Velten J (2008) In vivo characterization of plant promoter element interaction using synthetic promoters. Transgenic Res 17:437–457

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI, McCallum EJ, Lee R, Botella JR (2005) Characterization of a strong constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Res 14:941–967

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty D, Botella JR (2007) Over-expression of a truncated Arabidopsis thaliana heterotrimeric G protein γ subunit results in a phenotype similar to α and β subunit knockouts. Gene 393:163–170

    Article  CAS  PubMed  Google Scholar 

  • Danthinne X, van Emmelo J (1990) Studies on the translational properties of STNV RNA non-coding regions. 42nd International symposium on crop protection. Gent, Belgium

    Google Scholar 

  • De Amicis F, Patti T, Marchetti S (2007) Improvement of the pBI121 plant expression vector by leader replacement with a sequence combining a poly(CAA) and a CT motif. Transgenic Res 16:731–738

    Article  PubMed  Google Scholar 

  • De Loose M, Danthinne X, Van Bockstaele E, Van Montagu M, Depicker A (1995) Different 5′ leader sequences modulate β-glucuronidase accumulation levels in transgenic Nicotiana tabacum plants. Euphytica 85:209–216

    Article  Google Scholar 

  • Dunsmuir P (1985) The petunia chlorophyll a/b binding-protein genes - a comparison of Cab genes from different gene families. Nucleic Acids Res 13:2503–2518

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135:2207–2219

    Article  CAS  PubMed  Google Scholar 

  • Futterer J, Hohn T (1996) Translation in plants - rules and exceptions. Plant Mol Biol 32:159–189

    Article  CAS  PubMed  Google Scholar 

  • Gallie DR (1993) Posttranscriptional regulation of gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 44:77–105

    Article  CAS  Google Scholar 

  • Gallie DR, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res 20:4631–4638

    Article  CAS  PubMed  Google Scholar 

  • Harpster MH, Townsend JA, Jones JDG, Bedbrook J, Dunsmuir P (1988) Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco sugarbeet and oilseed rape callus tissue. Mol Gen Genet 212:182–190

    Article  CAS  PubMed  Google Scholar 

  • Joshi JP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi R, Bailey-Serres J (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res 33:955–965

    Article  CAS  PubMed  Google Scholar 

  • Klaff P, Riesner D, Steger G (1996) RNA structure and the regulation of gene expression. Plant Mol Biol 32:89–106

    Article  CAS  PubMed  Google Scholar 

  • Kozak M (1989) The scanning model for translation: An update. J Cell Biol 108:229–241

    Article  CAS  PubMed  Google Scholar 

  • Laurena AC, Magdalita PM, Hidalgo MSP, Villegas VN, Mendoza EMT, Botella JR (2002) Cloning and molecular characterization of ripening-related ACC synthase from papaya fruit (Carica papaya L.). In: Proceedings of the International Symposium on Tropical and Subtropical Fruits

  • Lodish HF (1976) Translational control of protein synthesis. Annu Rev Biochem 45:39–72

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Hori M, Shizawa N, Nakayama I, Shinmyo A, Yoshida K (2006) High-efficiency secretory production of peroxidase C1a using vesicular transport engineering in transgenic tobacco. J Biosci Bioeng 102:102–109

    Article  CAS  PubMed  Google Scholar 

  • Mylne J, Botella JR (1998) Binary vectors for sense and antisense expression of Arabidopsis ESTs. Plant Mol Biol Report 16:257–262

    Article  CAS  Google Scholar 

  • Narsai R, Howell KA, Millar AH, O’Toole N, Small I, Whelan J (2007) Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell 19:3418–3436

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol 105:473–482

    PubMed  Google Scholar 

  • Odell JT, Nagy F, Chua N (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a ß-glucoronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Purnell MP, Botella JR (2007) Tobacco isoenzyme 1 of NAD(H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo. Plant Physiol 143:530–539

    Article  CAS  PubMed  Google Scholar 

  • Trusov Y, Zhang W, Assmann SM, Botella JR (2008) Heterotrimeric G protein Gγ-deficient mutants do not recapitulate all phenotypes of Gβ-deficient mutants. Plant Physiol 147:636–649

    Article  CAS  PubMed  Google Scholar 

  • Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58:69–81

    Article  CAS  Google Scholar 

  • Turner RL, Glynn M, Taylor SC, Cheung MK, Spurr C, Twell D, Foster GD (1999) Analysis of a translational enhancer present within the 5′-terminal sequence of the genomic RNA of potato virus S. Arch Virol 144:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Venter M (2007) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12:118–124

    Article  CAS  PubMed  Google Scholar 

  • Wells DR, Tanguay RL, Le H, Gallie DR (1998) HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Gene Dev 12:3236–3251

    Article  CAS  PubMed  Google Scholar 

  • Wu KQ, Hu M, Martin T, Wang CM, Li XQ, Tian LN, Brown D, Miki B (2003) The cryptic enhancer elements of the tCUP promoter. Plant Mol Biol 51:351–362

    Article  CAS  PubMed  Google Scholar 

  • Zaccomer B, Haenni AL, Macaya G (1995) The remarkable variety of plant RNA virus genomes. J Gen Virol 76:231–247

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Botella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wever, W., McCallum, E.J., Chakravorty, D. et al. The 5 untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants. Transgenic Res 19, 667–674 (2010). https://doi.org/10.1007/s11248-009-9332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9332-6

Keywords

Navigation