Skip to main content
Log in

Dependency of Lithium Complex Grease on the Size of hBN Particles for Enhanced Performance

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Industries continue to seek novel eco-friendly additives for developing greases for enhanced tribo-performance and multi-functionality. A lot is reported on the potential of nanoparticles in this aspect, but very limited on the “size effect” of particles, especially on an exploration of hexagonal boron nitride (hBN) particles. In this work, three sizes (micron, sub-micron, and nano) of hBN particles (each ten times bigger than the earlier ones) were used (4 wt.%) in grease to determine the size effect of hBN particles on performance properties, including tribological. Developed greases were examined for tribological properties using a four-ball friction tester, SRV tester, and four-ball EP tester. The results indicated that the greases containing nanoparticles (NPs) of hBN exhibited the best anti-friction (AF), anti-wear (AW), and extreme pressure (EP) properties. These proved more effective as AFA and AWA (~ 60% improvement) rather than EPA (~ 25% improvement) compared to the Li-grease. The morphology and chemical compositions of the films formed on the worn steel balls’ surfaces were examined using the scanning electron microscope, EDAX, Raman spectrometer, and 3 D profilometry. Results indicated that easy penetration of smaller-sized hBN particles into the clearance space of a tribo-couple facilitated the formation of beneficial coherent tribo-film that protected the tribo-surfaces, as evident from SEM-EDAX, and Raman data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017). https://doi.org/10.1007/s40544-017-0183-5

    Article  CAS  Google Scholar 

  2. Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016). https://doi.org/10.1016/j.triboint.2016.05.020

    Article  CAS  Google Scholar 

  3. Gulzar, M., Masjuki, H.H., Kalam, M.A., Varman, M., Zulkifli, N.W.M., Mufti, R.A., Zahid, R.: Tribological performance of nanoparticles as lubricating oil additives. J Nanopart Res 18, 1–25 (2016). https://doi.org/10.1007/s11051-016-3537-4

    Article  CAS  Google Scholar 

  4. Kee, K., Hwang, Y., Seongir, C., Choi, Y., Kwon, L., Lee, J., Kim, S.H.: Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35, 127–131 (2009). https://doi.org/10.1007/s11249-009-9441-7

    Article  CAS  Google Scholar 

  5. Saini, V., Seth, S., Ramakumar, S.S.V., Bijwe, J.: Carbon nanoparticles of varying shapes as additives in mineral oil assessment of comparative performance potential. ACS Appl. Mater. Interfaces. 13(32), 38844–38856 (2021)

    Article  CAS  Google Scholar 

  6. Tao, X., Jiazheng, Z., Kang, X.: The ball-bearing effect of diamond nanoparticles as an oil additive. J. Phys. D Appl. Phys. 29, 2932–2937 (1996). https://doi.org/10.1088/0022-3727/29/11/029

    Article  CAS  Google Scholar 

  7. Li, B., Wang, X., Liu, W., Xue, Q.: Tribochemistry and antiwear mechanism of organic-inorganic nanoparticles as lubricant additives. Tribol. Lett. 22, 79–84 (2006). https://doi.org/10.1007/s11249-005-9002-7

    Article  CAS  Google Scholar 

  8. Chang, H., Lan, C.W., Chen, C., Kao, M., Guo, J.: Anti-wear and friction properties of nanoparticles as additives in the lithium grease. Int. J. Precis. Eng. Manuf. 15, 2059–2063 (2014). https://doi.org/10.1007/s12541-014-0563-y

    Article  Google Scholar 

  9. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013). https://doi.org/10.1007/s10853-012-7038-2

    Article  CAS  Google Scholar 

  10. Kumar, N., Saini, V., Bijwe, J.: Performance properties of lithium greases with PTFE particles as additive: controlling parameter- size or shape? Tribol Int 148, 106302 (2020). https://doi.org/10.1016/j.triboint.2020.106302

    Article  CAS  Google Scholar 

  11. Stolarski, T.: Remarks on the wear of a journal bearing lubricated by a grease containing a powdered PTFE additive. Tribol. Int. 9, 161–163 (1976). https://doi.org/10.1016/0301-679X(76)90093-1

    Article  Google Scholar 

  12. Czarny, R., Paszkowski, M.: The influence of graphite solid additives, MoS2 and PTFE on changes in shear stress values in lubricating greases. J. Synth. Lubr. 24, 19–29 (2007). https://doi.org/10.1002/jsl.26

    Article  CAS  Google Scholar 

  13. Silver, H.B.B., Stanley, I.R.: The effect of the thickener on the efficiency of load-carrying additives in greases. Tribol. Int. 7, 113–118 (1974). https://doi.org/10.1016/0041-2678(74)90011-6

    Article  CAS  Google Scholar 

  14. Niu, M., Qu, J.: Tribological properties of nano-graphite as an additive in mixed oil-based titanium complex grease. RSC Adv. 73, 133–144 (2018). https://doi.org/10.1039/C8RA08109C

    Article  Google Scholar 

  15. Cheng, Z.L., Qin, X.X.: Study on friction performance of graphene-based semi-solid grease. Chin. Chem. Lett. 25, 1305–1307 (2014). https://doi.org/10.1016/j.cclet.2014.03.010

    Article  CAS  Google Scholar 

  16. Fan, X., Xia, Y., Wang, L., Li, W.: Multilayer graphene as a lubricating additive in bentone grease. Tribol. Lett. 55, 455–464 (2014). https://doi.org/10.1007/s11249-014-0369-1

    Article  CAS  Google Scholar 

  17. Kumar, N., Saini, V., Bijwe, J.: Tribological investigations of nano and micro-sized graphite particles as an additive in lithium-based grease. Tribol. Lett. 68, 1–13 (2020). https://doi.org/10.1007/s11249-020-01362-1

    Article  CAS  Google Scholar 

  18. Sahoo, R.R., Biswas, S.K.: Effect of layered MoS2 nanoparticles on the frictional behavior and microstructure of lubricating greases. Tribol. Lett. 53, 157–171 (2014). https://doi.org/10.1007/s11249-013-0253-4

    Article  CAS  Google Scholar 

  19. Wang, T., Li, Z.J., Li, J., He, Q.: Impact of boron nitride nanoparticles on the wear property of lithium base grease. J. Mater. Eng. Perform. 29, 4991–5000 (2020). https://doi.org/10.1007/s11665-020-05008-0

    Article  CAS  Google Scholar 

  20. Kumar, N., Saini, V., Bijwe, J.: Exploration of talc nanoparticles to enhance the performance of Lithium grease. Tribol Int 162, 107107 (2021). https://doi.org/10.1016/j.triboint.2021.107107

    Article  CAS  Google Scholar 

  21. Saxena, A., Kumar, D., Tandon, N., Kaur, T., Singh, N.: Development of vegetable oil-based greases for extreme pressure applications: an integration of non-toxic, eco-friendly ingredients for enhanced performance. Tribol Lett (2022). https://doi.org/10.1007/S11249-022-01651-X

    Article  Google Scholar 

  22. Gupta, M.K., Bijwe, J., Kadiyala, A.K.: Tribo-investigations on oils with dispersants and hexagonal boron nitride particles. J Tribol 140, 031801 (2018). https://doi.org/10.1115/1.4038105

    Article  CAS  Google Scholar 

  23. Reeves, C.J., Menezes, P.L., Lovell, M.R., Jen, T.C.: The size effect of boron nitride particles on the tribological performance of biolubricants for energy conservation and sustainability. Tribol. Lett. 51, 437–452 (2013). https://doi.org/10.1007/s11249-013-0182-2

    Article  CAS  Google Scholar 

  24. Pawlak, Z., Kałdoński, T., Lisewski, M., Urbaniak, W., Oloyede, A.: The effect of hexagonal boron nitride additive on the effectiveness of grease-based lubrication of a steel surface. Ind Lubrication Tribol 64, 84–89 (2012). https://doi.org/10.1108/00368791211208688

    Article  Google Scholar 

  25. Jason, Y.J.J., How, H.G., Teoh, Y.H., Chuah, H.G.: A study on the tribological performance of nanolubricants. Processes 8, 1–33 (2020). https://doi.org/10.3390/pr8111372

    Article  CAS  Google Scholar 

  26. Senyk, S., Chodkiewicz, A., Gocman, K., Szczęśniak, B., Kałdoński, T.: Hexagonal nano and micro boron nitride: properties and lubrication applications. Materials 15, 955 (2022). https://doi.org/10.3390/ma15030955

    Article  CAS  Google Scholar 

  27. Podgornik, B., Kosec, T., Kocijan, A., Donik.: Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming. Tribol Int 81, 267–275 (2020). https://doi.org/10.1016/j.triboint.2014.09.011

    Article  CAS  Google Scholar 

  28. Wu, C., Xie, Y., Zhao, H., Yang, H., Li, X., Ni, J.: Effects of hBN and CaCO3 nanoparticles on tribological and vibration properties of polyurea grease on rolling bearing. Tribol Lett 70(3), 1–14 (2022)

    Article  Google Scholar 

  29. Kumar, N., Saini, V., Bijwe, J.: Synergism or antagonism in tribo-performance of nano-greases using combinations of nanoparticles of graphite and PTFE. Appl Nanosci. 11(10), 2525–2536 (2021)

    Article  CAS  Google Scholar 

  30. Maurya, U., Vasu, V., Kashinath, D.: Ionic liquid-nanoparticle-based hybrid-nanolubricant additives for potential enhancement of tribological properties of lubricants and their comparative study with ZDDP. Tribol. Lett. 70, 11 (2022). https://doi.org/10.1007/s11249-021-01551-6

    Article  CAS  Google Scholar 

  31. Gupta, M.K., Bijwe, J., Padhan, M.: Role of size of hexagonal boron nitride particles on tribo-performance of nano and micro-oils. Lubr. Sci. 30, 441–456 (2018). https://doi.org/10.1002/ls.1431

    Article  CAS  Google Scholar 

  32. ASTM D1403: Standard test methods for cone penetration of lubricating grease using one-quarter, pp. 1–9. ASTM International, West Conshohocken (2020)

    Google Scholar 

  33. ASTM D217: Standard test methods for cone penetration of lubricating grease, pp. 1–15. ASTM International (2021)

    Google Scholar 

  34. ASTM D2266. Standard test method for wear preventive characteristics of lubricating grease (four-ball method). ASTM International (2021) https://doi.org/10.1520/D2266-01R15

  35. ASTM D2596. Standard test method for measurement of extreme-pressure properties of lubricating grease (four-ball method). ASTM International (2020). https://doi.org/10.1520/D2596-20

  36. Martin J.M, Ohmae N. Nanolubricants, 1st ed. John Wiley & Sons, Ltd., New York, 2008 https://doi.org/10.1002/9780470987711.

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Bijwe.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Saini, V. & Bijwe, J. Dependency of Lithium Complex Grease on the Size of hBN Particles for Enhanced Performance. Tribol Lett 71, 20 (2023). https://doi.org/10.1007/s11249-022-01691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01691-3

Keywords

Navigation