Skip to main content

Advertisement

Log in

Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Significant studies about Tamarix chinensis as an introduced invasive plant species have been implemented in North America. However, the response of native T. chinensis to its environment is not well known in China. T. chinensis is a useful species in preventing sea water intrusion in coastal areas of northern China. It is necessary to fully understand the relationships between environmental conditions and ecological characteristics of this species to better preserve its habitats. The Yellow River Delta Natural Reserve, one of the major distribution regions of T. chinensis, was then selected as a case study area to investigate the response of this species to water table depth and soil salinity (Na+, Cl, Mg2+). It was found that sites with shallow water table depths (less than 1.5 m) and low soil salinity (less than 30 psu), provided the best habitat conditions for T. chinensis. The results also showed that plant height, stem diameter, and crown width were all positively correlated to plant age, while they had negative correlations with water table depth. Negative correlations between plant height and soil salinity, plant stem diameter and soil salinity were also concluded. However, no obvious relationship between the crown breadth of T. chinensis and soil salinity was observed. Four types of T. chinensis habitats were obtained based on the ecological characteristics of T. chinensis individuals associated with soil salinity and water table depth, i.e., (1) Low water table with high soil salinity; (2) Deep water table with high soil salinity; (3) Deep water table with low soil salinity; (4) Inundation with low salinity. These results provide a sound basis for wetland management in the Yellow River Delta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anniwaer, Yin LK (1997) Study on biomass of the Tamarix genus. Environ Prot Xinjiang 1:46–50

    Google Scholar 

  • Baum BR (1967) Introduced and naturalized Tamarisks in the United States and Canada. Baileya 15:19–25

    Google Scholar 

  • Bestelmeyer BT, Brown JR, Havstad KM, Alexander R, Chavez G, Herrick (2003) Development and use of state-and-transition models for rangelands. J Range Manag 56:114–126. doi:10.1002/1096-9837

    Article  Google Scholar 

  • Brotherson JD, Field D (1987) Tamarix: impacts of a successful weed. Rangelands 9:110–112

    Google Scholar 

  • Brotherson JD, Carmen JC, Szyska LA (1984) Stem-diameter age relationships of Tamarix ramosissima in central. Utah 37:362–364

    Google Scholar 

  • Busch DE, Smith SD (1995) Mechanisms associated with decline of woody species in riparian ecosystems of the Southwestern U.S. Ecol Monogr 65:347–370

    Article  Google Scholar 

  • Chen JX, Qiao LQ, Gou SH, Wang YX, He HB (2008) Experiment of salinity tolerance of Tamarix. Shandong For Sci Tech 1:18–19

    Google Scholar 

  • Cleverly JR, Dahm CN, Thibault JR, Gilroy DJ, Allred Coonrod JE (2002) Seasonal estimates of actual evapotranspiration from Tamarix ramosissima stands using three-dimensional eddy covariance. J Arid Environ 52:181–197

    Article  Google Scholar 

  • Devitt DA, Piorkowski JM, Smith SD, Cleverly JR, Sala A (1997a) Plant water relations of Tamarix ramosissima in response to the imposition and alleviation of soil moisture stress. J Arid Environ 36:527–540. doi:10.1006/jare.1996.0216

    Article  Google Scholar 

  • Devitt DA, Sala A, Mace KA, Smith SD (1997b) The effect of applied water on the water use of saltcedar in a desert riparian environment. J Hydrol 192:233–246. doi:10.1016/S0022-1694(96)03105-8

    Article  Google Scholar 

  • Di Tomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Tech 12:326–336

    Google Scholar 

  • Dick-Peddie WA (1993) New Mexico vegetation-past, present, and future. University of New Mexico Press, Albuquerque, NM, p 244

    Google Scholar 

  • Elmore AJ, Mustard JF, Manning SJ (2003) Regional patterns of plant community response to changes in water: Owens Valley, California. Ecol Appl 13:443–460

    Article  Google Scholar 

  • Evangilista P, Kumar S, Stohlgren TJ, Crall AW, Newman GJ (2007) Modeling aboveground biomass of Tamarix ramassissima in the Arkansas River Basin of southeastern Colorado, USA. West N Am Nat 67:503–509

    Article  Google Scholar 

  • Fu AH, Chen YN, Chen YP (2008) Changes of stem water potential of Tamarix ramosissima under drought stress in lower reaches. Chin J Ecol 27:532–538

    Google Scholar 

  • Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259. doi:10.1073/pnas.132403299

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Nagler PL (2005) Comparative ecophysiology of Tamarix ramosissima and native trees in western U.S. riparian zones. J Arid Environ 61:419–446. doi:10.1016/j.jaridenv.2004.09.025

    Article  Google Scholar 

  • Graf WL (1985) Tamarisk and river-channel management. Environ Manag 6:283–296. doi:10.1007/BF01875060

    Article  Google Scholar 

  • Gries D, Zeng F, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2003) Growth and water relations of Tamarix amosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell Environ 26:725–736

    Article  Google Scholar 

  • Gu FT (1991) Chinese Tamarisk and its exploration in the mouth area of the yellow River. Grassland Chin 3:33–36

    Google Scholar 

  • Harris DR (1966) Recent plant invasions in the arid and semi-arid southwest of the United States. Ann Assoc Am Geogr 56:408–422

    Article  Google Scholar 

  • Horton JL, Clark JL (2001) Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings. For Ecol Manag 140:239–247. doi:10.1016/S0378-1127(00)00314-5

    Article  Google Scholar 

  • Horton JL, Kolb TE, Hart SC (2001a) Responses of riparian trees to inter-annual variation in ground water table depth in a semiarid river basin. Plant Cell Environ 24:293–304

    Article  Google Scholar 

  • Horton JL, Kolb TE, Hart SC (2001b) Physiological response to groundwater depth varies among species and with river flow regulation. Ecol Appl 11:1046–1059

    Article  Google Scholar 

  • Horton JL, Hart SC, Kolb TE (2003) Physiological condition and water source use of Sonoran Desert riparian trees at the Bill Williams River, AZ, USA. Isotopes Environ Health Stud 39:69–82. doi:10.1080/1025601031000096772

    Article  CAS  PubMed  Google Scholar 

  • Huang SW, Liang JY (2007) Progress of studies on Tamarix Linn. Strait Pharm J 19:5–9

    CAS  Google Scholar 

  • James RC, Stanley D, Smith AS, Dale AD (1997) Invasive capacity of Tamarix ramosissimain a Mojave Desert floodplain: the role of drought. Oecologia 111:12–18. doi:10.1007/s004420050202

    Article  Google Scholar 

  • Johnson S (1986) Alien plants drain western waters. Nature Conservency News. September–October

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thalianatinged glasses. Plant Cell Environ 27:675–684. doi:10.1111/j.1365-3040.2004.01180.x

    Article  CAS  Google Scholar 

  • Ladenburger CG, Hild AL, Kazmer DJ, Munn LC (2006) Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA. J Arid Environ 65:111–128. doi:10.1016/j.jaridenv.2005.07.004

    Article  Google Scholar 

  • Lalir A, Pouakoff-Mayber A (1976) Effect of salinity on respiratory pathways in root tips of Tamarix tetragynal. Plant Physiol 57:167–170

    Article  Google Scholar 

  • Lesica P, Miles S (2001) Tamarisk growth at the Northern margin of its naturalized range in Montana, USA. Wetlands 2:240–246. doi:10.1672/0277-5212

    Article  Google Scholar 

  • Lesica P, Miles S (2004) Ecological strategies for managing tamarisk on the C.M. Russell National Wildlife Refuge, Montana, USA. Biol Conserv 119:535–543. doi:10.1016/j.biocon.2004.01.015

    Article  Google Scholar 

  • Lesica P, Thomas HD (2004) Is Tamarisk allelopathic? Plant Soil 267:357–365

    Article  CAS  Google Scholar 

  • Li XY, Zhang XM, He XY, Zeng FJ, Thomas FM, Foetzke A (2004) Drought stress and irrigation effects on water relations of Tamarisk ramosissima in the Qira Oasis. Acta Phytoecologica Sinica 28:644–650

    Google Scholar 

  • Li SN, Wang GX, Deng W, Lu YX (2008) Variations of groundwater depth in Yellow River Delta in recent two decades. Pro Geogr 5:49–56

    Google Scholar 

  • Muradian R (2001) Ecological thresholds: a survey. Ecol Econ 38:7–24. doi:10.1016/S0921-8009(01)00146-X

    Article  Google Scholar 

  • Nurit BN, Alexandra PM (1977) Salinity stress and the content of proline in roots of Pisum sativum and Tamarix tetragyna. Ann Bot 41:173–179

    Google Scholar 

  • Qaiser M (1981) The genus Tamarix (Tamaricaceae) in Pakistan. Pak J Bot 13:107–158

    Google Scholar 

  • Radford JQ, Bennett AF (2004) Thresholds in landscape parameters: occurrence of the white-browed treecreeper, Climacteris affinis in Victoria, Australia. Biol Conserv 117:375–391. doi:10.1016/j.biocon.2003.08.002

    Article  Google Scholar 

  • Sher AA, Marshall DL (2003) Seedling Competition between native Populus Deltoides (Salicaceae) and exotic Tamarix Ramosissima (Tamaricacea) across water regimes and substrate types. Am J Bot 90:413–422

    Article  Google Scholar 

  • Small H (1989) Ion chromatography. Plenum Press, New York

    Google Scholar 

  • Stenquist S (2000) Saltcedar integrated weed management and the Endangered Species Act. In: Spencer N (ed) Proceedings of the X International Symposium on Biological Control of Weeds 4–14 July 1999. Montana State University, Bozeman, Montana, USA, pp 487–504

    Google Scholar 

  • Stromberg J (1998) Dynamics of Fremont cottonwood (Populus fremontii) and salt cedar (Tamarix chinensis) populations along the San Pedro River, Arizona. J Arid Environ 40:133–155. doi:10.1006/jare.1998.0438

    Article  Google Scholar 

  • Tomar OS, Gupta RK (1985) Performance of some forest tree species in saline soils under shallow and saline water-table conditions. Plant Soil 87:329–335. doi:10.1007/BF02181900

    Article  Google Scholar 

  • Toms JD, Lesperance ML (2003) Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034–2041. doi:10.1890/02-0472

    Article  Google Scholar 

  • Vandekerckhove L, Poesen J, Wijdenes DO (2000) Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf Process Landforms 25:1201–1220. doi:10.1002/1096-9837

    Article  Google Scholar 

  • Walker LR, Barnes PL, Powell EA (2006) Tamarix aphylla: a newly invasive tree in southern Nevada. Western North Am Nat 66:191–201. doi:10.3398/1527-0904

    Article  Google Scholar 

  • Wang X, Hou P, Yin LK, Feng DQ, Pan BR (1999) Effect of soluble substance of Tamarix under soil water stress slowly. Arid Zone Res 16:6–11

    CAS  Google Scholar 

  • Welz B (1999) Atomic absorption spectrometry. Wiley, New York

    Google Scholar 

  • Wiesenborn, WD (1996) Saltcedar impacts on salinity, water, fire frequency, and flooding. Saltcedar Management Workshop, Rancho Mirage, CA. California Exotic Pest Plant Council 9–12

  • Xu F, Guo WH, Wang W, Xu WH, Wang YF, Wang RQ (2007) A comparison of photosynthetic characteristics between Tamarix chinensis and Phragmites australis in the Yellow River Delta. Shandong For Sci 173:29–33

    Google Scholar 

  • Yang LW, He BY, Huang PY, Nuer B (2006) Evaluation on ecological value of Tamarix spp forest in Hotan basin. J Desert Res 25:268–274

    Google Scholar 

  • Yao RJ, Yang JS (2007) Quantitative analysis of spatial distribution pattern of soil salt accumulation in plough layer and shallow groundwater in the Yellow River Delta. Trans CSAE 8:45–51

    Google Scholar 

  • Yin LK (2002) The ex-situ protection and the ecological adaptability of Tamarix L.in China. Arid Zone Res 19:12–16

    Google Scholar 

  • Zaveleta E (2000) Valuing ecosystem services lost to Tamarix invasion in the United States. In: Mooney HA, Richard JH (eds) Invasive species in a changing world. Island Press, Washington DC, pp 261–302

  • Zeng FJ, Li XM, Zhan XM (2002) A review of the water physiological characteristics of Tamarix and its prospect. Chin J Appl Ecol 13:611–614

    Google Scholar 

  • Zhang YM, Pan BR, Yin LK, Yang WM, Zhang DY (2001) The research history of the family Tamaricaceae. Acta Bot Boreal Occident Sin 21:796–804

    Google Scholar 

  • Zhang DY, Pan BR, Yin LK (2003) The photo geographical studies of Tamarix (Tamaricaceae). Acta Botanica Yummnica 25:415–427

    Google Scholar 

  • Zhang LB, Song YR, Wu X (2008) Salt tolerance capacity and the effects on the improvement of coastal saline soil. J Anhui Agric Sci 36:5424–5426

    CAS  Google Scholar 

  • Zhuang L, Chen YN, Li WH, Zhao YH (2005) Relationship of the protective enzymes of desert vegetations with water table in the lower reaches of Tarim River. Acto Bot Boreal Occident Sin 25:1287–1294

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Juanzhang Lu and Yueliang Liu from the Yellow River Delta Management Bureau, and Feng Lu and Lidong Wang from the Dawenliu Management station for their help with field works. This research was financially supported by the State Key Basic Research Development Program of China (973 Program) (No. 2006CB403303), and the Natural Science Fund Project of China (No.U0833002; 40571149). The authors also acknowledge the contributions of the anonymous reviewers and editors for their time and efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoshan Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, B., Yang, Q., Zhang, K. et al. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecol 209, 279–290 (2010). https://doi.org/10.1007/s11258-010-9723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9723-z

Keywords

Navigation