Skip to main content
Log in

Prediction of potentially suitable distribution areas of Thesium chinense Turcz. in China against the background of climate change

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

With traditional Chinese medicine playing an increasingly important role in human society, the scarcity of wild resources has become a key constraint to the development of the industry. For this study, optimized maximum entropy models were employed to predict the patterns and changes in potentially suitable distribution areas for Thesium chinense Turcz. in China, in the present (1970–2000) and future (2050s, 2070s, and 2090s) under multiple climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results showed that the predicted regions of high, medium, and low potential fitness zones were 6.19 × 104, 150.99 × 104, and 155.61 × 104 km2. The highly suitable areas were primarily found in Shandong and Shanxi Provinces. Furthermore, we found its relatively stable habitat was mainly distributed across South Central Shanxi, Eastern Gansu, and Midwest Guizhou. An analysis of the transfer of masses revealed that the potential habitat of the plant migrated in a northwesterly direction under various climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmadzadeh F, Flecks M, Carretero MA, Böhme W, Ilgaz C, Engler JO, James HD, Üzüm N, Rödder D, Masters J (2013) Rapid lizard radiation lacking niche conservatism: ecological diversification within a complex landscape. J Biogeogr 40:1807–1818

    Article  Google Scholar 

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Arenas-Castro S, Goncalves JF, Moreno M, Villar R (2020) Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci Total Environ 709:136161

    Article  CAS  PubMed  Google Scholar 

  • Brown JL, Anderson B (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  • Brown JL, Bennett JR, French CM (2017) SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peer J 5:e4095

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan RY, Kong XQ, Huang MY, Varela S, Ji X (2016) The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. Peer J 4:e2185

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng L, Sun J, Shi Y, Wang G, Wang T (2020) Predicting suitable habitats of camptotheca acuminata considering both climatic and soil variables. Forests 11(8):891

    Article  Google Scholar 

  • Guo Y, Guo J, Shen X, Wang G, Wang T (2019) Predicting the bioclimatic habitat suitability of Ginkgo biloba L. in China with field-test validations. Forests 10(8):705

    Article  Google Scholar 

  • Huang Y, Zeng Y, Jiang P, Chen H, Yang J (2022) Prediction of potential geographic distribution of endangered relict tree species Dipteronia sinensis in China based on MaxEnt and GIS. Pol J Environ Stud 31:3597–3609

    Article  Google Scholar 

  • Jing P, Wu Y, Ye G (2015) Prediction of potential geological distribution of Asarum in China by Maxent model. Pl Div Res 37:349–356

    Google Scholar 

  • Li J, Fan G, He Y (2020) Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci Total Environ 698:134141

    Article  CAS  PubMed  Google Scholar 

  • Li X, Tian H, Wang Y, Li R, Song Z, Zhang F, Xu M, Li D (2012) Vulnerability of 208 endemic or endangered species in China to the effects of climate change. Reg Environ Change 13:843–852

    Article  Google Scholar 

  • Li X, Wang H, Liu L (2022) Distribution and protection of Chinese beech under the background of climate change. Pol J Environ Stud 31:2341–2354

    Article  Google Scholar 

  • Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, Wang H (2019) Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci Total Environ 664:203–214

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Fan X, Luo S, Zhang Y, Yao S, Guo Q, Qian Z (2020) Predicting the potential distribution of two varieties of Litsea coreana (Leopard-Skin Camphor) in China under climate change. Forests 11(11):1159

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) Species: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154:289–300

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Princeton University Press.

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Article  Google Scholar 

  • Puchałka R, Dyderski MK, Vítková M, Sádlo J, Klisz M, Netsvetov M, Prokopuk Y, Matisons R, Mionskowski M, Wojda T, Koprowski M, Jagodziński AM (2021) Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Glob Chang Biol 27:1587–1600

    Article  PubMed  Google Scholar 

  • Qin A, Liu B, Guo Q, Bussmann RW, Ma F, Jian Z, Xu G, Pei S (2017) Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob Ecol Conserv 10:139–146

    Article  Google Scholar 

  • Rong Z, Zhao C, Liu J, Gao Y, Zang F, Guo Z, Mao Y, Wang L (2019) Modeling the effect of climate change on the potential distribution of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests 10(1):62

    Article  Google Scholar 

  • Santos-Hernández AF, Monterroso-Rivas AI, Granados-Sánchez D, Villanueva-Morales A, Santacruz-Carrillo M (2021) Projections for Mexico’s tropical rainforests considering ecological niche and climate change. Forests 12(2):119

    Article  Google Scholar 

  • Shirk AJ, Cushman SA, Waring KM, Wehenkel CA, Leal-Sáenz A, Toney C, Lopez-Sanchez CA (2018) Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. Forest Ecol Manag 411:176–186

    Article  Google Scholar 

  • Smith AB, Godsoe W, Rodriguez-Sanchez F, Wang HH, Warren D (2019) Niche estimation above and below the species level. Trends Ecol Evol 34:260–273

    Article  PubMed  Google Scholar 

  • Suetsugu K, Kawakita A, Kato M (2008) Host range and selectivity of the hemiparasitic plant Thesium chinense (Santalaceae). Ann Bot 102:49–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun S, Zhang Y, Huang D, Wang H, Cao Q, Fan P, Yang N, Zheng P, Wang R (2020) The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci Total Environ 744:140786

    Article  CAS  PubMed  Google Scholar 

  • Tang CQ, Matsui T, Ohashi H, Dong Y-F, Momohara A, Herrando-Moraira S, Qian S, Yang Y, Ohsawa M, Luu HT, Grote PJ, Krestov PV, Ben L, Werger M, Robertson K, Hobohm C, Wang C-Y, Peng M-C, Chen X, Wang H-C, Su W-H, Zhou R, Li S, He L-Y, Yan K, Zhu M-Y, Hu J, Yang R-H, Li W-J, Tomita M, Wu Z-L, Yan H-Z, Zhang G-F, He H, Yi S-R, Gong H, Song K, Song D, Li X-S, Zhang Z-Y, Han P-B, Shen L-Q, Huang D-S, Luo K, López-Pujol J (2018a) Identifying long-term stable refugia for relict plant species in East Asia. Nat Commun 9:4488

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang CQ, Matsui T, Ohashi H, Dong YF, Momohara A, Herrando-Moraira S, Qian S, Yang Y, Ohsawa M, Luu HT, Grote PJ, Krestov PV, Ben L, Werger M, Robertson K, Hobohm C, Wang CY, Peng MC, Chen X, Wang HC, Su WH, Zhou R, Li S, He LY, Yan K, Zhu MY, Hu J, Yang RH, Li WJ, Tomita M, Wu ZL, Yan HZ, Zhang GF, He H, Yi SR, Gong H, Song K, Song D, Li XS, Zhang ZY, Han PB, Shen LQ, Huang DS, Luo K, Lopez-Pujol J (2018b) Identifying long-term stable refugia for relict plant species in East Asia. Nat Commun 9:4488

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang X, Yuan Y, Wang L, Chen S, Liu X, Zhang J (2021) Identifying prioritized planting areas for medicinal plant Thesium chinense Turcz. under climate change in China. Ecol Inform 66:101459

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend PA, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Law R, Hung K, Guillet BD (2014) Consumer trust in tourism and hospitality: a review of the literature. J Hosp Tour Manag 21:1–9

    Article  Google Scholar 

  • Warren DL (2012) In defense of ‘niche modeling.’ Trends Ecol Evol 27:497–500

    Article  PubMed  Google Scholar 

  • Wei B, Wang R, Hou K, Wang X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conserv 16:e00477

    Article  Google Scholar 

  • Wei J, Li X, Lu Y, Zhao L, Zhang H, Zhao Q (2019) Modeling the potential global distribution of phenacoccus madeirensis green under various climate change scenarios. Forests 10(9):773

    Article  Google Scholar 

  • Wei Y, Zhang L, Wang J, Wang W, Niyati N, Guo Y, Wang X (2021) Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: current distribution, trading, and futures under climate change and overexploitation. Sci Total Environ 755:142548

    Article  CAS  PubMed  Google Scholar 

  • Wu YM, Shen XL, Tong L, Lei FW, Mu XY, Zhang ZX (2021) Impact of past and future climate change on the potential distribution of an endangered montane Shrub Lonicera oblata and its conservation implications. Forests 12(2):125

    Article  Google Scholar 

  • Xu W, Sun H, Jin J, Cheng J (2020) Predicting the potential distribution of apple canker pathogen (Valsa mali) in China under Climate Change. Forests 11(11):1126

    Article  CAS  Google Scholar 

  • Yang J, Huang Y, Jiang X, Chen H, Liu M, Wang R (2022a) Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Glob Ecol Conserv 38:e02186

    Article  Google Scholar 

  • Yang J, Jiang P, Huang Y, Yang Y, Wang R, Yang Y (2022b) Potential geographic distribution of relict plant Pteroceltis tatarinowii in China under climate change scenarios. PLoS ONE 17:e0266133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Li Z, Liu L, Bo A, Zhang C, Li M (2020) Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia China. Sci Rep 10:12482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye XZ, Zhao GH, Zhang MZ, Cui XY, Fan HH, Liu B (2020) Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in Response to Climate Change after the Last Interglacial Period. Forests. https://doi.org/10.3390/f11040434

    Article  Google Scholar 

  • Ye X, Yu X, Yu C, Tayibazhaer A, Xu F, Skidmore AK, Wang T (2018) Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Sci Total Environ 612:775–787

    Article  CAS  PubMed  Google Scholar 

  • Yi Y-J, Cheng X, Yang Z-F, Zhang S-H (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan. China Ecol Eng 92:260–269

    Article  Google Scholar 

  • Zhang X, Liu B, Guo Q, Song L, Chen L, Wang C (2016) Construction of a haustorium development associated SSH library in Thesium chinense and analysis of specific ESTs included by Imperata cylindrica. Biochem Syst Ecol 64:46–52

    Article  CAS  Google Scholar 

  • Zhang K, Yao L, Meng J, Tao J (2018) Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci Total Environ 634:1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Sun L, Tao J (2020a) Impact of climate change on the distribution of Euscaphis japonica (Staphyleaceae) trees. Forests. https://doi.org/10.3390/f11050525

    Article  Google Scholar 

  • Zhang W-W, Wang Y-H, Zhang Z-P, Zheng S-H, Cai C-F (2020b) Quantitative evaluation on regional suitability of Thesium chinense by TCMGIS. Mod Chin Med 22:1962–1966

    Google Scholar 

  • Zhang W, Wang Y, Zhang Z (2020c) Quantitative evaluation on regional suitability of Thesium chinense by TCMGIS. Mod Chin Med 22:1962–1966

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant Numbers: 82104323 and 32170378]; National Key Technologies R & D Program for Modernization of Traditional Chinese Medicine [Grant Numbers: 2017YFC1701300 and 2017YFC1700706]; Xi’an Science and Technology Project (20NYYF0057); Fundamental Research Funds for the Central Universities [Grant Numbers: GK202103065 and GK201806006]; Shaanxi Provincial Key R & D Program (2021SF-383, 2020LSFP2-21 and 2018FP2-26); Research Project on Postgraduate Education and Teaching Reform of Shaanxi Normal University (GERP-20-41); and Youth Innovation Team Construction Scientific Research Project of Shaanxi Education Department(21JP027).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design. Conceptualization: PG, HS and JN; Methodology: PG and QZ; Writing-Original Draft: PG; Formal analysis: PG and JN; Resources: PG and SW; Data Curation: MG; Investigation: PG, HS, SW and JN; Funding acquisition: JN, SW and ZW; Writing- Reviewing and Editing: JN and ZW. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junfeng Niu or Zhezhi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ling Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Si, H., Zhao, Q. et al. Prediction of potentially suitable distribution areas of Thesium chinense Turcz. in China against the background of climate change. Plant Ecol 224, 449–461 (2023). https://doi.org/10.1007/s11258-023-01312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-023-01312-6

Keywords

Navigation