Skip to main content
Log in

Isolation, characterization, and genomic analysis of vB_PaeS_TUMS_P81, a lytic bacteriophage against Pseudomonas aeruginosa

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic human pathogen that can lead to nosocomial infections which are in turn life threatening. The increase in antibiotic resistance, at an alarming rate, has resulted in a pressing need for alternative therapeutic approaches such as phage therapy, which hold promise according to several studies. This study featured the isolation and characterization of vB_PaeS_TUMS_P81, a new lytic Pseudomonas phage. The whole-genome sequencing indicated that it has a genome of 73,167 bp containing 93 predicted coding sequences. Genes involved in virulence or lysogeny pathway were nowhere to be found in the genome, so it is potentially safe when it comes to therapeutic applications. Genomic and phylogenetic analysis indicated that vB_PaeS_TUMS_P81 is a member of the genus Litunavirus, belonging to Schitoviridae family. The present study lays the groundwork for further research on treatment of P. aeruginosa infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tenover FC, Nicolau DP, Gill CM (2022) Carbapenemase-producing Pseudomonas aeruginosa -an emerging challenge. Emerg Microbes Infect 11:811–814. https://doi.org/10.1080/22221751.2022.2048972

    Article  CAS  Google Scholar 

  2. Yaeger LN, Coles VE, Chan DCK, Burrows LL (2021) How to kill Pseudomonas-emerging therapies for a challenging pathogen. Ann N Y Acad Sci 1496:59–81. https://doi.org/10.1111/nyas.14596

    Article  Google Scholar 

  3. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610. https://doi.org/10.1128/cmr.00040-09

    Article  CAS  Google Scholar 

  4. Antonelli G, Cappelli L, Cinelli P, Cuffaro R, Manca B, Nicchi S et al (2021) Strategies to tackle antimicrobial resistance: the example of escherichia coli and pseudomonas aeruginosa. Int J Mol Sci 22:4943. https://doi.org/10.3390/ijms22094943

    Article  CAS  Google Scholar 

  5. Tacconelli E, Magrini N, Kahlmeter G, Singh N (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization 27:318–327

    Google Scholar 

  6. Tümmler B (2019) Emerging therapies against infections with Pseudomonas aeruginosa. F1000Res 8:1371. https://doi.org/10.12688/f1000research.19509.1

    Article  CAS  Google Scholar 

  7. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181. https://doi.org/10.1016/j.femsre.2003.08.001

    Article  CAS  Google Scholar 

  8. Zschach H, Joensen KG, Lindhard B, Lund O, Goderdzishvili M, Chkonia I et al (2015) What can we learn from a metagenomic analysis of a georgian bacteriophage cocktail? Viruses 7:6570–6589. https://doi.org/10.3390/v7122958

    Article  CAS  Google Scholar 

  9. Fauconnier A (2019) Phage therapy regulation: from night to dawn. Viruses. https://doi.org/10.3390/v11040352

    Article  Google Scholar 

  10. Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR et al (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32:2173–2179. https://doi.org/10.1007/s11095-014-1617-7

    Article  CAS  Google Scholar 

  11. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42:2074–2079. https://doi.org/10.1128/JCM.42.5.2074-2079.2004

    Article  CAS  Google Scholar 

  12. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76. https://doi.org/10.1007/978-1-60327-164-6_7

    Article  CAS  Google Scholar 

  13. Sillankorva S (2018) Isolation of Bacteriophages for Clinically Relevant Bacteria. Methods Mol Biol 1693:23–30. https://doi.org/10.1007/978-1-4939-7395-8_3

    Article  CAS  Google Scholar 

  14. Kropinski AM (2009) Measurement of the rate of attachment of bacteriophage to cells. Methods Mol Biol 501:151–155. https://doi.org/10.1007/978-1-60327-164-6_15

    Article  CAS  Google Scholar 

  15. Kropinski AM (2018) Practical advice on the one-step growth curve. In: Martha RJC, Andrew MK, Rob L (eds) Bacteriophages Methods and Protocols. Springer, NY, pp 41–47. https://doi.org/10.1007/978-1-4939-7343-9_3

    Chapter  Google Scholar 

  16. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  Google Scholar 

  18. Wick RR, Schultz MB, Zobel J, Holt KE (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–3352. https://doi.org/10.1093/bioinformatics/btv383

    Article  CAS  Google Scholar 

  19. Garneau J, Depardieu F, Fortier L-C, Bikard D, Monot M (2017) PhageTerm: a fast and user-friendly software to determine bacteriophage termini and packaging mode using randomly fragmented NGS data. Sci Rep. https://doi.org/10.1038/s41598-017-07910-5

    Article  Google Scholar 

  20. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  Google Scholar 

  21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  Google Scholar 

  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:1–15. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  Google Scholar 

  23. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw387

    Article  Google Scholar 

  24. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12:1268. https://doi.org/10.3390/v12111268

    Article  CAS  Google Scholar 

  25. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. https://doi.org/10.1093/nar/25.5.955

    Article  CAS  Google Scholar 

  26. Tynecki P, Guziński A, Kazimierczak J, Jadczuk M, Dastych J, Onisko A (2020) PhageAI - Bacteriophage life cycle recognition with machine learning and natural language processing. bioRxiv.https://doi.org/10.1101/2020.07.11.198606

  27. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK et al (2016) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1004

    Article  Google Scholar 

  28. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrobial Chemotherapy 67:2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  Google Scholar 

  29. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L et al (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrobial Agents Chemotherapy 58:212–220. https://doi.org/10.1128/AAC.01310-13

    Article  CAS  Google Scholar 

  30. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic acids research 44:D694-D7.https://doi.org/10.1093/nar/gkv1239

  31. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrobial Agents Chemotherapy 58:3895–3903. https://doi.org/10.1128/AAC.02412-14

    Article  CAS  Google Scholar 

  32. Seemann T (2016) ABRicate: mass screening of contigs for antiobiotic resistance genes. Available from: https://github.com/tseemann/abricate.

  33. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses 9:70. https://doi.org/10.3390/v9040070

    Article  Google Scholar 

  34. Wittmann J, Turner D, Millard AD, Mahadevan P, Kropinski AM, Adriaenssens EM (2020) From orphan phage to a proposed new family-the diversity of N4-like viruses. Antibiotics (Basel) 9:663. https://doi.org/10.3390/antibiotics9100663

    Article  CAS  Google Scholar 

  35. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evolution 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  Google Scholar 

  36. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539. https://doi.org/10.1093/bioinformatics/bti054

    Article  CAS  Google Scholar 

  37. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  Google Scholar 

  38. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  Google Scholar 

  39. Gu J, Liu X, Li Y, Han W, Lei L, Yang Y et al (2012) A method for generation phage cocktail with great therapeutic potential. PLoS ONE 7:e31698. https://doi.org/10.1371/journal.pone.0031698

    Article  CAS  Google Scholar 

  40. Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM et al (2017) Synergistic interaction between phage therapy and antibiotics clears pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215:703–712. https://doi.org/10.1093/infdis/jiw632

    Article  CAS  Google Scholar 

  41. Ceyssens PJ, Brabban A, Rogge L, Lewis MS, Pickard D, Goulding D et al (2010) Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the “N4-like viruses.” Virology 405:26–30. https://doi.org/10.1016/j.virol.2010.06.011

    Article  CAS  Google Scholar 

  42. Choi KH, McPartland J, Kaganman I, Bowman VD, Rothman-Denes LB, Rossmann MG (2008) Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4. J Mol Biol 378:726–736. https://doi.org/10.1016/j.jmb.2008.02.059

    Article  CAS  Google Scholar 

  43. Russell DA (2018) Sequencing, assembling, and finishing complete bacteriophage genomes. Methods Mol Biol 1681:109–125. https://doi.org/10.1007/978-1-4939-7343-9_9

    Article  CAS  Google Scholar 

  44. Fang X, Fang Z, Zhao J, Zou Y, Li T, Wang J et al (2012) Draft genome sequence of Pseudomonas aeruginosa strain ATCC 27853. J Bacteriol 194:3755. https://doi.org/10.1128/jb.00690-12

    Article  CAS  Google Scholar 

  45. Kwan T, Liu J, Dubow M, Gros P, Pelletier J (2006) Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 188:1184–1187. https://doi.org/10.1128/jb.188.3.1184-1187.2006

    Article  CAS  Google Scholar 

  46. Paddison P, Abedon ST, Dressman HK, Gailbreath K, Tracy J, Mosser E et al (1998) The roles of the bacteriophage T4 r genes in lysis inhibition and fine-structure genetics: a new perspective. Genetics 148:1539–1550. https://doi.org/10.1093/genetics/148.4.1539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Douraghi, from Tehran University of Medical Sciences, IKHC and Noor Reference Laboratory for providing bacterial strains; Dr. S. Sabouri Shahrbabak for her kind assistance; and Mr. S. Delara for his invaluable help writing the manuscript.

Funding

This work was supported by the National Institute for Medical Research Development (NIMAD), Grant no. 964206.

Author information

Authors and Affiliations

Authors

Contributions

Haniyeh Kamyab: Data curation; Formal analysis; Investigation; Methodology; Writing -original draft; Software. Narges Torkashvand: Data curation; Formal analysis; Investigation; Methodology; Software. Ahmad Reza Shahverdi: Supervision, Project administration; Funding acquisition. Mohammad Reza Khoshayand: Supervision; Validation. Mohammad Sharifzadeh: Supervision; Validation. Zargham Sepehrizadeh: Conceptualization, Supervision, Project administration, Funding acquisition, Writing—review and editing.

Corresponding author

Correspondence to Zargham Sepehrizadeh.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported.

Additional information

Edited by Andrew Millard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2075 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamyab, H., Torkashvand, N., Shahverdi, A.R. et al. Isolation, characterization, and genomic analysis of vB_PaeS_TUMS_P81, a lytic bacteriophage against Pseudomonas aeruginosa. Virus Genes 59, 132–141 (2023). https://doi.org/10.1007/s11262-022-01954-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01954-0

Keywords

Navigation