Skip to main content

Advertisement

Log in

Heavy Metals Contamination in Century-Old Manmade Technosols of Hope Bay, Antarctic Peninsula

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Technosols are anthropogenic soils that may be strongly impacted by heavy metal deposition, which have not yet been described in Antarctica. In this paper, we present a chemical study of what is supposedly the oldest manmade soil from Antarctic Peninsula, developed in the vicinity of Trinity House and Nordenskjold Hut at Hope Bay. Chemical and morphological soil attributes indicate that a former ornithogenic site (penguin rookery) was further subjected to human disturbance, following local exploration since 1903. We detected very high amounts of heavy metals such as Cd, Cu, Pb, and Zn. For the most impacted site, pseudototal concentrations of these elements reach 47, 2,082, 19,381, and 5,225 mg kg−1, respectively. Enrichment factors were calculated using Zr as reference element, and high values were found for these contaminated sites, qualifying some of them as extremely polluted. Also, both the mobilizable and mobile fraction of Cd and Pb indicate the need of intervention in the affected area. These findings are all consistent with the human impacts and strong contamination. Strong positive correlation between the pseudototal concentrations of Cd, Cu, Mn, Ni, Pb, and Zn indicates a similar source of pollution. These soils may represent the oldest Technosols in Antarctic Continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ancora, S., Volpi, V., Olmastroni, S., Focardi, S., & Leonzio, C. (2002). Assumption and elimination of trace elements in Adélie penguins from Antarctica: a preliminary study. Marine Environmental Research, 54, 341–344.

    Article  CAS  Google Scholar 

  • Andreu, V., & Gimeno-Garcia, E. (1999). Evolution of heavy metals in marsh areas under rice farming. Environmental Pollution, 104, 271–282.

    Article  CAS  Google Scholar 

  • Boularbah, A., Schwartz, C., Bitton, G., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63, 802–810.

    Article  CAS  Google Scholar 

  • Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. Boca Raton: CRC.

    Book  Google Scholar 

  • CETESB (2005). Companhia Ambiental do Estado de São Paulo. Relatório de Estabelecimento de Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo.

  • DIN 38 414 Part 7 (1983). German standard methods for the examination of water, waste water and sludge, sludge and sediment (Group S), Digestion using aqua regia for the subsequent determination of the acid-soluble portion of metals (S7).

  • Environmental Protection Authority. (2009). Classification and management of contaminated soil for disposal. Hobart: EPA. Information Bulletin 105.

    Google Scholar 

  • Gupta, S. K., Vollmer, M. K., & Krebs, R. (1996). The importance of mobile, mobilizable and pseudototal heavy metals fractions in soil for three-level risk assessment and risk management. The Science of the Total Environment, 178, 11–20.

    Article  CAS  Google Scholar 

  • Hattersley-Smith, M. A. G. (1991). The history of place-names in the British Antarctic Territory. British Antarctic Survey, Scientific Reports, 113(1), 1–350.

    Google Scholar 

  • Headley, A. D. (1996). Heavy metals concentrations in peat profiles from the high Arctic. The Science of the Total Environment, 177, 105–111.

    Article  CAS  Google Scholar 

  • International Union of Soil Sciences (2006). IUSS Bulletin 109. http://www.iuss.org/Bulletins/IUSSBulletin109.pdf Accessed 11 november 2010.

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Matusiewicz, H. (1997). Atom trapping and in situ preconcentration techniques for flame atomic absorption spectrometry. Spectrochimica Acta B, 52, 1711–1736.

    Article  Google Scholar 

  • Otero Pérez, X. L. (1998). Effects of Nesting Yellow-legged Gulls (Larus cachinnans Pallas) on the Heavy Metal Content of Soils in the Cies Island (Galicia, North-west Spain). Marine Pollution Bulletin, 36(4), 267–272.

    Article  Google Scholar 

  • Papafilippaki, A., Gasparatos, D., Haidouti, C., & Stavroulakis, G. (2007). Total and bioavailable forms of Cu, Zn, Pb and Cr in agricultural soils: a study from the hydrological basin of Keritis, Chania, Greece. Global NEST Journal, 9, 201–206.

    Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Lopez Sanchez, J. F. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189, 291–333.

    Article  CAS  Google Scholar 

  • Reimann, C., & Caritat, P. (2000). Intrinsic flaws of element enrichment factors in Environmental Geochemistry. Environmental Science & Technology, 34, 5084–5091.

    Article  CAS  Google Scholar 

  • Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., et al. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156, 251–260.

    Article  CAS  Google Scholar 

  • Simas, F. N. B., Schaefer, C. E. G. R., Albuquerque-Filho, M. R., Michel, R. F. M., Pereira, V. V., Gomes, M. R. M., et al. (2007). Ornithogenic cryosols from maritime Antarctica: phosphatization as a soil forming process. Geoderma, 138, 191–203.

    Article  CAS  Google Scholar 

  • Stafilov, T., Sajn, R., Pancevski, Z., Boev, B., Trontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175, 896–914.

    Article  CAS  Google Scholar 

  • Stark, S. C., Snape, I., Graham, N. J., Brennan, J. C., & Gore, D. B. (2008). Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during the remediation of a waste disposal site in Antarctica. Journal of Environmental Monitoring, 10, 60–70.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627.

    Article  CAS  Google Scholar 

  • Tang, X., Shen, C., Shi, D., Cheema, S. A., Khan, M. I., Zhang, C., et al. (2010). Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China. Journal of Hazardous Materials, 173, 653–660.

    Article  CAS  Google Scholar 

  • Tatur, A. (1989). Ornithogenic soils of the Maritime Antarctic. Polish Polar Research, 4, 481–532.

    Google Scholar 

  • van Raij, B., Andrade, J. C., Cantarella, H., & Quaggio, J. A. (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico.

    Google Scholar 

  • Watling, R. J. (1977). The use of slotted quartz tube for the analysis of trace metals in fresh water. Water SA, 3, 218–220.

    CAS  Google Scholar 

  • Woehler, E. J. (1993). The distribution and abundance of Antarctic and Subantarctic penguins. Scientific Committee on Antarctic Research (SCAR) Bird Biology Subcommittee, Cambridge.

  • Yaroshevsky, A. A. (2006). Abundances of chemical elements in the earth’s crust. Geochemistry International, 44, 48–55.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (Processes 07/04515-4, 09/09481-6, and 08/08260-3), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for financial support; to the Brazilian Navy for the logistic support, and to Dr. Carlos Pérez for the analysis of SR-XRF at Laboratório Nacional de Luz Síncrotron (Processes XRF 7045 and 7046). This work is a contribution of the TERRANTAR laboratory of the INCT Criosfera (CNPq – Brazil). The authors also thank the anonymous reviewers for the contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edenir Rodrigues Pereira-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga Bueno Guerra, M., Schaefer, C.E.G.R., de Freitas Rosa, P. et al. Heavy Metals Contamination in Century-Old Manmade Technosols of Hope Bay, Antarctic Peninsula. Water Air Soil Pollut 222, 91–102 (2011). https://doi.org/10.1007/s11270-011-0811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0811-z

Keywords

Navigation