Skip to main content
Log in

Speciation of Phosphorus and Cadmium in a Contaminated Soil Amended with Bone Char: Sequential Fractionations and XANES Spectroscopy

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The phosphorus (P) and cadmium (Cd) speciation was analyzed in a contaminated soil having a Cd concentration of 1,028 mg kg−1 in order to assess the value of bone char (BC) as a Cd immobilizing agent. The soil was incubated with BC and triple superphosphate (TSP, as control) in the dark at 60 to 70 % water holding capacity for time periods between 1 and 145 days. Samples from the various incubation periods were sequentially extracted and investigated by X-ray absorption near edge structure (XANES) spectroscopy. The sequential P extraction revealed that BC increased the H2SO4 extractable P fraction, mainly consisting of Ca- and Mg-phosphates, by 14 %, whereas TSP increased the water extractable P fraction by 7 % of total P at day 1. Subsequently, the proportions of these two P fractions decreased during incubation. The increase in these two P fractions is explained by the solubility of the main components of BC (hydroxylapatite (HAP)) and TSP (Ca(H2PO4)2). Furthermore, this finding was confirmed for BC by the P K-edge XANES spectra using partial least square regression that provided independent evidence for increased proportion of HAP after BC application. As a result of BC dissolution, the soil pH increased resulting in Cd immobilization as indicated by significantly reduced concentrations of mobile Cd in the sequential extraction up to 23 mg Cd kg−1. This observed immobilization was explained by the Cd L 3 -edge XANES spectra revealing an immediate increase in the proportion of insoluble Cd3(PO4)2. By contrast, none of the speciation methods indicated a Cd immobilizing capability of TSP. Thus, by using this multi-methodological approach, we could show that besides its potential as renewable and clean P fertilizer, BC is a superior immobilization agent for Cd compared to TSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in the terrestrial environments—biochemistry, bioavailability and risk of metals (pp. 450–800). New York: Springer.

    Book  Google Scholar 

  • Ahnstrom, Z. S., & Parker, D. R. (1999). Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Science Society of America Journal, 63, 1650–1658.

    Article  CAS  Google Scholar 

  • Amini, M., Khademi, H., Afyuni, M., & Abbaspour, K. C. (2005). Variability of available cadmium in relation to soil properties and landuse in an arid region in central Iran. Water, Air, and Soil Pollution, 162, 205–218.

    Article  CAS  Google Scholar 

  • Antoniadis, V., & Alloway, B. J. (2000). Availability of Cd, Ni and Zn to ryegrass in sewage sludge-treated soils at different temperatures. Water, Air, and Soil Pollution, 132, 201–214.

    Article  Google Scholar 

  • Austrian Standards Institute. (1999). ÖNORM L 1084. Chemical analyses of soils: Determination of carbonate. Vienna: Österreichisches Normungsinstitut.

    Google Scholar 

  • Beauchemin, S., Hesterberg, D., Chou, J., Beauchemin, M., Simard, R. R., & Sayers, E. (2003). Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray adsorption near-edge structure spectroscopy and chemical fractionation. Journal of Environmental Quality, 32, 1809–1819.

    Article  CAS  Google Scholar 

  • Blume, H. P., Stahr, K., & Leinweber, P. (2011). Bodenkundliches praktikum, vol 3. Heidelberg: Spektrum Akademischer Verlag.

    Book  Google Scholar 

  • Bolan, N. S., & Hedley, M. J. (1990). Dissolution of phosphate rocks in soils. 2. Effect of pH on the dissolution and plant availability of phosphate rock in soil with pH dependent charge. Fertilizer Research, 24, 125–134.

    Article  CAS  Google Scholar 

  • Bolan, N. S., Naidu, R., Khan, M. A. R., Tillman, R. W., & Syers, J. K. (1999). The effects of anions sorption on sorption and leaching of cadmium. Australian Journal of Soil Research, 3, 445–460.

    Article  Google Scholar 

  • Bolan, N. S., Adriano, D. C., Duraisamy, P., Mani, A., & Arulmozhiselvan, K. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant and Soil, 250, 83–94.

    Article  CAS  Google Scholar 

  • Chaiyarat, R., Suebsima, R., Putwattana, N., Kruatrachue, M., & Pokethitiyook, M. (2011). Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water, Air, and Soil Pollution, 214, 383–392.

    Article  CAS  Google Scholar 

  • Dalal, R. C. (1977). Soil organic phosphorus. Advances in Agronomy, 29, 83–113.

    Article  CAS  Google Scholar 

  • Gilbert, N. (2009). The disappearing nutrient. Nature, 461, 716–718.

    Article  CAS  Google Scholar 

  • Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in organic and organic soil phosphorus fractions induced by cultivation practices and laboratory incubations. Soil Science Society of America Journal, 46, 970–976.

    Article  CAS  Google Scholar 

  • Hesterberg, D., Zhou, W. Q., Hutchison, K. J., Beauchemin, S., & Sayers, D. E. (1999). XAFS study of adsorbed and mineral forms of phosphate. Journal of Synchrotron Radiation, 6, 636–638.

    Article  CAS  Google Scholar 

  • Hodson, M. E., Valsami-Jones, E., & Cotter-Howells, J. D. (2000). Bone meal additions as a remediation treatment for metal contaminated soil. Environmental Science and Technology, 34, 3501–3507.

    Article  CAS  Google Scholar 

  • Isaure, M. P., Fayard, B., Sarret, G., Pairis, S., & Bourguignon, J. (2006). Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta, 12, 1242–1252.

    Google Scholar 

  • Jalilehvand, F., Leung, B. O., & Mah, V. (2009). Cadmium(II) complex frmation with cysteine and penicillamine. Inorganic Chemistry, 48, 5758–5771.

    Article  CAS  Google Scholar 

  • Kolay, A. K. (2007). Manures and fertilizer. New Delhi: Atlantic Publisher and Distributors.

    Google Scholar 

  • Kruse, J., Negassa, W., Appathurai, N., Zuin, L., & Leinweber, P. (2010). Phosphorus speciation in sequentially extracted agro-industrial by-products: evidence from X-ray absorption near edge structure spectroscopy. Journal of Environmental Quality, 39, 2179–2184.

    Article  CAS  Google Scholar 

  • Lanfranco, A. M., Schofield, P. F., Murphy, P. J., Hodson, M. E., Mosselmans, J. F. W., & Valsami-Jones, E. (2003). Characterization and identification of mixed-metal phosphates in soils: the application, of Raman spectroscopy. Mineralogical Magazine, 67, 1299–1316.

    Article  CAS  Google Scholar 

  • Linquist, B. A., Singleton, P. W., & Cassman, K. G. (1997). Inorganic and organic phosphorus dynamics during a build-up and decline of available phosphorus in an ultisol. Soil Science, 162, 254–264.

    Article  CAS  Google Scholar 

  • Lombi, E., & Susini, J. (2009). Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant and Soil, 320, 1–35.

    Article  CAS  Google Scholar 

  • Madrid, L., & Diaz-Barrientos, E. (1992). Influence of carbonate on the reaction of heavy metals in soils. Journal of Soil Science, 43, 709–721.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1980). Chemisorption of Cd2+ on calcite surfaces. Soil Science Society of America Journal, 44, 26–28.

    Article  CAS  Google Scholar 

  • Naidu, R., Bolan, N. S., Kookana, R. S., & Tiller, K. G. (1994). Ionic strength and pH effects on the adsorption of cadmium and the surface charge of soils. European Journal of Soil Science, 45, 19–429.

    Article  Google Scholar 

  • Negassa, W., & Leinweber, P. (2009). How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. Journal of Plant Nutrition and Soil Science, 172, 305–325.

    Article  CAS  Google Scholar 

  • Pickering, I. J., Prince, R. C., George, G. N., Rauser, W. E., Wickramasinghe, W. A., Watson, A. A., et al. (1999). X-ray absorption spectroscopy of cadmium phytochelatin and model systems. Biochimica et Biophysica Acta, 1429, 351–364.

    Article  CAS  Google Scholar 

  • Prieto, M., Cubillas, P., & Fernández-González, A. (2003). Uptake of dissolved cadmium by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochimica et Cosmochimica Acta, 67, 3859–3869.

    Article  CAS  Google Scholar 

  • R Development Core Team (2011). Vienna, Austria. ISBN 3-900051_07_0, URL: http://www.R-project.org/.

  • Ravel, B., & Newville, M. (2005). Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537–541.

    Article  CAS  Google Scholar 

  • Rowell, D. L. (1994). Soil science: Methods and applications. Harlow: Longman.

    Google Scholar 

  • Seuntjens, P., Nowack, B., & Schulin, R. (2004). Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant and Soil, 265, 61–73.

    Article  CAS  Google Scholar 

  • Shober, A. L., Hesterberg, D. L., Thomas Sims, J., & Gardner, S. (2006). Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. Journal of Environmental Quality, 35, 1983–1993.

    Article  CAS  Google Scholar 

  • Siebers, N., & Leinweber, P. (2013). Bone char—a clean and renewable fertilizer with cadmium immobilizing capability. Journal of Environmental Quality. doi:10.2134/jeq2012.0363.

    Google Scholar 

  • Siebers, N., Kruse, J., Eckhardt, K.-U., Hu, Y., & Leinweber, P. (2012). Solid-phase cadmium speciation in soil using L3-edge XANES spectroscopy with partial least-square regression. Journal of Synchrotron Radiation, 19, 579–585.

    Article  CAS  Google Scholar 

  • Soon, Y. K. (1981). Solubility and sorption of cadmium in soils amended with sewage sludge. Journal of Soil Science, 32, 85–95.

    Article  CAS  Google Scholar 

  • Stewart, J. W. B., & Tiessen, H. (1987). Dynamics of soil organic phosphorus. Biogeochemica, 4, 41–60.

    Article  CAS  Google Scholar 

  • Tiessen, H., Stewart, J. W. B., & Moir, J. O. (1983). Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60–90 years of cultivation. Journal of Soil Science, 34, 815–823.

    Article  CAS  Google Scholar 

  • Toor, G. S., Peak, J. D., & Sims, J. T. (2005). Phosphorus speciation in broiler litter and turkey manure produced from modified diets. Journal of Environmental Quality, 34, 687–697.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1997). Method 305la: Microwave assisted acid dissolution of sediments, sludges, soils, and oils (2nd ed.). Washington: U.S. Gov. Print. Office.

    Google Scholar 

  • Valsami-Jones, E., Ragnarsdottir, K. V., Putnis, A., Bosbach, D., Kemp, A. J., & Cressey, G. (1998). The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chemical Geology, 151, 215–233.

    Article  CAS  Google Scholar 

  • Warren, G. P., Robinson, J. S., & Someus, E. (2009). Dissolution of phosphorus from animal bone char in 12 soils. Nutrient Cycling in Agroecosystems, 84, 167–178.

    Article  Google Scholar 

  • Wehrens, R., & Mevik, B. H. (2007). R package version 2.1-0-http://mevik.net/work/software/pls.html.

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network Ecology. doi:10.5402/2011/402647.

    Google Scholar 

  • Xiong, L. M. (1995). Influence of phosphate on cadmium adsorption by soils. Fertilizer Research, 40, 31–40.

    Article  CAS  Google Scholar 

  • Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59, 505–510.

    Google Scholar 

  • Zheng, Z., MacLeod, J. A., Sanderson, J. B., & Lafond, J. (2004). Phosphorus dynamics after ten annual applications of mineral fertilizers and liquid dairy manure: fractionation and path analyses. Soil Science, 169, 449–456.

    Article  CAS  Google Scholar 

  • Zimmer, D., Kiersch, K., Baum, C., Meissner, R., Müller, R., Jandl, G., et al. (2011). Scale-dependent variability of As and heavy metals in a River Elbe floodplain. Clean - Soil, Air, Water, 39, 328–337.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research described in this paper was performed in the scope of the Leibniz WissenschaftsCampus “Phosphor-Forschung-Rostock” and was done at the Canadian Light Source, which is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. We thank Dr. Volkmar König, Thuringian State Research Centre for Agriculture (TLL), for providing the soil used in this study. N. Siebers also acknowledges a Ph.D. grant from the Federal State of Mecklenburg, Western Pommeria in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Siebers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebers, N., Kruse, J. & Leinweber, P. Speciation of Phosphorus and Cadmium in a Contaminated Soil Amended with Bone Char: Sequential Fractionations and XANES Spectroscopy. Water Air Soil Pollut 224, 1564 (2013). https://doi.org/10.1007/s11270-013-1564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1564-7

Keywords

Navigation