Skip to main content
Log in

Electrochemical and Catalytic Studies of a Supported Photocatalyst Produced from Petrochemical Residue in the Photocatalytic Degradation of Dexamethasone and Guaifenesin Drugs

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dexamethasone and guaifenesin were comparatively degraded under UV and visible radiation in the presence of a supported photocatalyst generated from petrochemical residue. For comparative reasons, photochemical tests were also conducted in the presence of commercial titania (P25). The photoelectrochemical behavior of the supported photocatalyst was examined using cyclic voltammetry and differential pulse voltammetry in the dark and under LED irradiation. This photodegradation study indicates the highest drug degradation values were observed for guaifenesin under UV (48.6 %) and visible (45.2 %) radiation with the synthesized photocatalyst. Under the same conditions, the commercial P25 catalyst achieved 66.3 and 50.2 % of the degradation under UV and visible radiation, respectively. Exploratory tests with tap water samples revealed that the system may be sensitive to other analytes present in these environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  • Ahmed, S., Rasul, M. G., Martens, N., Brown, R., & Hashib, M. A. (2011). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollution, 215, 3–29.

    Article  CAS  Google Scholar 

  • Chen, C. S., Xie, X. D., Cao, S. Y., Liu, T. G., Tsang, Y. H., Xiao, Y., Liu, Q. C., Yang, X. F., & Gong, L. (2015). Enhanced photocatalytic properties of graphene oxide/ZnO nanohybrid by Mg dopants. Physica Scripta, 90, 1–7.

    Google Scholar 

  • Cheng, J., Chen, J., Lin, W., Liu, Y., & Kong, Y. (2015). Improved visible light photocatalytic activity of fluorine and nitrogenco-doped TiO2 with tunable nanoparticle size. Applied Surface Science, 332, 573–580.

    Article  CAS  Google Scholar 

  • Da Silva, W. L., Dos Santos, J. H. Z., Lansarin, M. A., & Stedile, F. C. (2014). The potential of chemical industrial and academic wastes as a source of supported photocatalysts. Journal of Molecular Catalysis A: Chemical, 393, 125–133.

    Article  Google Scholar 

  • Da Silva, W. L., Dos Santos, J. H. Z., Lansarin, M. A., & Livotto, P. R. (2015). Photocatalytic degradation of drugs by supported titania-based catalysts produced from petrochemical plant residue. Powder Technology, 279, 166–172.

    Article  Google Scholar 

  • Fagan, R., McCormack, D. E., Dionysiou, D. D., & Pillai, S. C. (2016). A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing, 42, 2–14.

    Article  CAS  Google Scholar 

  • Feng, L., Van Hullebusch, E. D., Rodrigo, M. A., Esposito, G., & Otturan, M. A. (2013). Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. a review. Chemical Engineering Journal, 228, 944–964.

    Article  CAS  Google Scholar 

  • Fernandes, A., Pacheco, M. J., Ciríaco, L., & Lopes, A. (2015). Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future. Applied Catalysis, B: Environmental, 176–177, 183–200.

    Article  Google Scholar 

  • Fernández-Castro, P., Vallejo, M., Román, M. F. S., & Ortiz, I. (2015). Insight on the fundamentals of advanced oxidation processes. role and review of the determination methods of reactive oxygen species. Journal of Chemical Technology and Biotechnology, 90, 796–820.

    Article  Google Scholar 

  • Franco, M. A. E., Da Silva, W. L., Bagnara, M., Lansarin, M. A., & Dos Santos, J. H. Z. (2014). Photocatalytic degradation of nicotine in an aqueous solution using unconventional supported catalysts and commercial ZnO/TiO2 underultraviolet radiation. Science of the Total Environment, 494–495, 97–103.

    Article  Google Scholar 

  • Hu, L., Yuan, H., Zou, L., Chen, F., & Hu, X. (2015). Adsorption and visible light-driven photocatalytic degradation of rhodamine B in aqueous solutions by Ag@AgBr/SBA-15. Applied Surface Science, 355, 706–715.

    Article  CAS  Google Scholar 

  • Iilavsky, J., & Jemian, P. R. (2009). Irena: tool suite for modeling and analysis of small-angle scattering. Journal of Applied Crystallography, 42, 347–353.

    Article  Google Scholar 

  • Jin, Z., Duan, W., Liu, B., Chen, X., Yang, F., & Guo, J. (2015). Fabrication of efficient visible light activated Cu–P25–graphene ternary composite for photocatalytic degradation of methyl blue. Applied Surface Science, 356, 707–718.

    Article  CAS  Google Scholar 

  • Kalambate, P. K., Sanghavi, B. J., Karna, S. P., & Srivastava, A. K. (2015). Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 213, 285–294.

    Article  CAS  Google Scholar 

  • Khataeea, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 328, 8–26.

    Article  Google Scholar 

  • Kline, S. R. (2006). Reduction and analysis of SANS and USANS data using IGOR Prog. Journal of Applied Crystallography, 39, 895–900.

    Article  CAS  Google Scholar 

  • Kudo, A., Kato, H., & Tsuji, I. (2004). Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 33, 1534–1539.

    Article  CAS  Google Scholar 

  • Lázár, I., Kalmár, J., Peter, A., Szilágyi, A., Gyõri, E., Ditrói, T., & Fábián, I. (2015). Photocatalytic performance of highly amorphous titania–silica aerogels with mesopores: the adverse effect of the in situ adsorption of some organic substrates during photodegradation. Applied Surface Science, 356, 521–531.

    Article  Google Scholar 

  • Lee, J. H., & Yeo, Y. (2015). Controlled drug release from pharmaceutical nanocarriers. Chemical Engineering Science, 125, 75–84.

    Article  CAS  Google Scholar 

  • Ling, Y., Xu, H., & Chen, X. (2015). Continuous multi-cell electrochemical reactor for pollutant oxidation. Chemical Engineering Science, 122, 630–636.

    Article  CAS  Google Scholar 

  • Litter, M. I., & Quici, N. (2010). Photochemical advanced oxidation processes for water and wastewater treatment. Recent Patents on Engineering, 4, 217–241.

    Article  CAS  Google Scholar 

  • Luo, L., Li, Y., Hou, J., & Yang, Y. (2014). Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Applied Surface Science, 319, 332–338.

    Article  CAS  Google Scholar 

  • Lydakis-Simantiris, A., Riga, D., Katsivela, E., Mantzavinos, D., & Xekoukoulotakis, N. P. (2010). Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination, 250, 351–355.

    Article  CAS  Google Scholar 

  • Martins, R. C., & Quinta-Ferreira, R. M. (2013). Remediation of phenolic wastewaters byadvanced oxidation processes (AOPs) at ambient conditions: comparative studies. Chemical Engineering Science, 66, 3243–3250.

    Article  Google Scholar 

  • Mohapatra, D. P., Brar, S. K., Tyagi, R. D., Picard, P., & Surampalli, R. Y. (2014). Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine. Science of the Total Environment, 470–471, 58–75.

    Article  Google Scholar 

  • Oliveira, T. M. B. F., Pessoa, G. P., Dos Santos, A. B., Lima-Nieto, P., & Correia, A. N. (2015). Simultaneous electrochemical sensing of emerging organic contaminants in full-scale sewage treatment plants. Chemical Engineering Journal, 267, 347–354.

    Article  CAS  Google Scholar 

  • Persico, F., Sansotera, M., Bianchi, C. L., Cavallotti, C., & Navarrini, W. (2015). Photocatalytic activity of TiO2-embedded fluorinated transparent coating for oxidation of hydrosoluble pollutants in turbid suspensions. Applied Catalysis, B: Environmental, 170–171, 83–89.

    Article  Google Scholar 

  • Rather, J. A., & Jain, R. (2015). Stripping voltammetric detection of nephrotoxic drug cefitizoxime in wastewater. Analytical Chemistry Research, 4, 13–19.

    Article  CAS  Google Scholar 

  • Saranya, M., Ramachandran, R., Samuel, E. J. J., Jeong, S. K., & Grace, A. N. (2015). Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst. Powder Technology, 279, 209–220.

    Article  CAS  Google Scholar 

  • Tijani, J. O., Fatoba, O. O., & Petrik, L. F. (2013). A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollution, 224, 1–30.

    Article  CAS  Google Scholar 

  • Tijani, J. O., Fatoba, O. O., Madzivire, G., & Petrik, L. F. (2014). A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water Air Soil Pollution, 225, 1–30.

    Article  CAS  Google Scholar 

  • Urtiaga, A., Fernandez-Castro, P., Gómez, P., & Ortiz, I. (2014). Remediation of wastewaters containing tetrahydrofuran. Study of the electrochemical mineralization on BDD electrodes. Chemical Engineering Journal, 239, 341–350.

    Article  CAS  Google Scholar 

  • Vadivel, S., & Rajarajan, G. (2015). Effect of Mg doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. Journal of Materials Science: Materials in Electronics, 26, 3155–3162.

    CAS  Google Scholar 

  • Vasileiadis, M., Pantelides, C. C., & Adjiman, C. S. (2015). Prediction of the crystal structures of axitinib, a polymorphic pharmaceutical molecule. Chemical Engineering Science, 121, 60–76.

    Article  CAS  Google Scholar 

  • Wu, R. J., Chen, C. C., Lu, C. S., Hsu, P. Y., & Chen, M. H. (2010). Phorate degradation by TiO2 photocatalysis: parameter and reaction pathway investigations. Desalination, 250, 869–875.

    Article  CAS  Google Scholar 

  • Yan, S., & Song, W. (2014). Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review. Environmental Science: Processes & Impacts, 16(4), 697–720.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq (Conselho Nacional de DesenvolvimentoCientífico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support granted to carry out this work. We are also grateful to the MultiLab®company for the donation of the pharmaceuticals used in this study. We would like to thank the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil) for analysis of SAXS (Project SAXS1—14535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Z. dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, W.L., Lansarin, M.A., dos Santos, J.H.Z. et al. Electrochemical and Catalytic Studies of a Supported Photocatalyst Produced from Petrochemical Residue in the Photocatalytic Degradation of Dexamethasone and Guaifenesin Drugs. Water Air Soil Pollut 227, 242 (2016). https://doi.org/10.1007/s11270-016-2932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2932-x

Keywords

Navigation