Skip to main content
Log in

Foundry Sands as Supports for Heterogeneous Photocatalysts

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Foundry sands from the iron foundry industry were employed as a support source for photocatalysts. TiCl4 was used as the titanium precursor in the preparation of the supported photocatalysts. The solids were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, diffuse reflectance spectroscopy in the ultraviolet range, small-angle X-ray scattering, nitrogen porosimetry, and zeta potential measurements. The prepared catalyst systems contained Ti, Al, Fe, K, Na, or Cu. All systems were also found to contain carbon. The systems were evaluated in the photodegradation of rhodamine B. For comparative reasons, P25 (Degussa) was also employed as a catalyst. Among the tested systems, the greatest percent dye degradation occurred with ultraviolet (65 %) and visible (38 %) radiation, whereas under the same conditions, the commercial P25 catalyst achieved 93 and 14 % degradation, respectively, for the ultraviolet and visible radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anpo, M., & Takeuchi, M. (2001). Design and development of second-generation titanium oxide photocatalysts to better our environment—approaches in realizing the use of visible light. International Journal of Photoenergy, 3, 89–94.

    Article  CAS  Google Scholar 

  • Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293, 269–271.

    Article  CAS  Google Scholar 

  • Bakis, R., Koyuncu, H., & Demirbas, A. (2006). An investigation of waste foundry sand in asphalt concrete mixtures. Waste Management and Research, 24, 269–274.

    Article  CAS  Google Scholar 

  • Beaucage, G. (1995). Approximations leading to a unified exponential/power-law approach to small-angle scattering. Journal of Applied Crystallography, 28, 717–728.

    Article  CAS  Google Scholar 

  • Beaucage, G. (1996). Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. Journal of Applied Crystallography, 29, 134–146.

    Article  CAS  Google Scholar 

  • Braganca, S. R., Vicenzi, J., Guerino, K., & Bergmann, C. P. (2006). Recycling of iron foundry sand and glass waste as raw material for production of whiteware. Waste Management and Research, 24, 60–66.

    Article  CAS  Google Scholar 

  • Da Silva, W. L., Dos Santos, J. H. Z., Lansarin, M. A., & Stedile, F. C. (2014). The potential of chemical industrial and academic wastes as a source of supported photocatalysts. Journal of Molecular Catalysis A: Chemical, 393, 125–133.

    Article  Google Scholar 

  • Dayton, E. A., Whitacre, S. D., Dungan, R. S., & Basta, N. T. (2010). Characterization of physical and chemical properties of spent foundry sands pertinent to beneficial use in manufactured soils. Plant and Soil, 329, 27–33.

    Article  CAS  Google Scholar 

  • Deng, A., & Tikalsky, P. J. (2008). Geotechnical and leaching properties of flowable fill incorporating waste foundry sand. Waste Management, 28, 2161–2170.

    Article  CAS  Google Scholar 

  • Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide. A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology. B, 9, 1–12.

    Article  CAS  Google Scholar 

  • Gogate, P., & Pandit, A. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient condition. Advances in Environmental Research, 8, 501–551.

    Article  CAS  Google Scholar 

  • Guney, Y., Aydilek, A. H., & Demirkan, M. M. (2006). Geoenvironmental behavior of foundry sand amended mixtures for highway subbases. Waste Management and Research, 26, 932–945.

    Article  Google Scholar 

  • Hashmi, M. S. J., Hashim, J., & Looney, L. (2002). Particle distribution in cast metal matrix composites—part I. Journal of Materials Processing Technology, 123, 251–257.

    Article  Google Scholar 

  • Ilavsky, J., & Jemian, P. R. (2009). Irena: tool suite for modeling and analysis of small-angle scattering. Journal of Applied Crystallography, 42, 347–353.

    Article  CAS  Google Scholar 

  • International Union of Pure and Applied Chemistry (IUPAC). (1972). Manual of symbols and terminology. Pure and Applied Chemistry, 31, 578.

    Google Scholar 

  • Irie, H., Watanabe, Y., & Hashimoto, K. (2003). Nitrogen-concentration dependence on photocatalytic activity of TiO2- x N x powders. Journal of Physical Chemistry B, 107, 5483–5486.

    Article  CAS  Google Scholar 

  • Jung, K. Y., Park, S. B., & Jang, H. D. (2004). Phase control and photocatalytic properties of nano-sized titania particles by gas-phase pyrolysis of TiCl4. Catalysis Communications, 5, 491–497.

    Article  CAS  Google Scholar 

  • Lai, C. W., Juan, J. C., Ko, W. B., & Hamid, S. B. A. (2014). An overview: recent development of titanium oxide nanotubes as photocatalyst for dye degradation. International Journal of Photoenergy, 1, 1–14.

    Google Scholar 

  • Lee, K. H., Cho, J. Y., Salgado, R., & Lee, I. (2001). Retaining wall model test with waste foundry sand mixture backfill. Geotechnical Testing Journal, 24, 401–408.

    Article  Google Scholar 

  • Lindsay, B. J., & Logan, T. J. (2005). Agricultural reuse of foundry sand. Journal of Residuals Science & Technology, 2, 3–12.

    CAS  Google Scholar 

  • Liu, S., Jaffrezic, N., & Guillard, C. (2008). Size effects in liquid-phase photo-oxidation of phenol using nanometer-sized TiO2 catalysts. Applied Surface Science, 255, 2704–2709.

    Article  CAS  Google Scholar 

  • Maeda, M., & Watanabe, T. (2006). Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma-enhanced chemical vapor deposition. Journal of the Electrochemical Society, 153, C186–C189.

    Article  CAS  Google Scholar 

  • Marschall, R., & Wang, L. (2013). Non-metal doping of transition metal oxides for visible-light photocatalysis. Catalysis Today, 225, 111–135.

    Article  Google Scholar 

  • Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles—a review. Tropical Journal of Pharmaceutical Research, 5, 561–573.

    Google Scholar 

  • Naik, T. R., & Singh, S. S. (1997). Permeability of flowable slurry materials containing foundry sand and fly ash. Journal of Geotechnical and Geoenvironmental Engineering, 123, 446–452.

    Article  CAS  Google Scholar 

  • Partridge, B. K., Alleman, J. E., Fox, P. J., & Mast, D. G. (1998). Performance evaluation of highway embankment constructed with waste foundry sand. Journal of the Transportation Research Board, 1619, 55–63.

    Article  Google Scholar 

  • Rhee, S. W., & Lee, W. K. (2006). Characteristics of spent foundry sand–loess mixture as ceramic support materials. Materials Science Forum, 510, 378–381.

    Article  Google Scholar 

  • Sho, H., Phuntsho, S., & Okour, Y. (2008). Visible light responsive titanium dioxide (TiO2). Journal of Industrial and Engineering Chemistry, 19, 1–16.

    Google Scholar 

  • Siddique, R., & Noumowe, A. (2008). Utilization of spent foundry sand in controlled low-strength materials and concrete. Resources, Conservation and Recycling, 53, 27–35.

    Article  Google Scholar 

  • Siddique, R., De Schutter, G., & Noumowe, A. (2009). Effect of used-foundry sand on the mechanical properties of concrete. Construction and Building Materials, 23, 976–980.

    Article  Google Scholar 

  • Silveira, F., Brambilla, R., Da Silveira, N. P., Do Alves, M. C. M., Stedile, F. C., Pergher, S. B. C., & Dos Santos, J. H. Z. (2010). Effect of textural characteristics of supported metallocenes on ethylene polymerization. Journal of Materials Science, 45, 1760–1768.

    Article  CAS  Google Scholar 

  • Singh, G., & Siddique, R. (2012). Abrasion resistance and strength properties of concrete containing waste foundry sand (WFS). Construction and Building Materials, 28, 421–426.

    Article  Google Scholar 

  • Tikalsky, P., Gaffney, M., & Regan, R. (2000). Properties of controlled low-strength material containing foundry sand. ACI Materials Journal, 97, 698–702.

    CAS  Google Scholar 

  • Wang, M., Song, G., Li, J., Miao, L., & Zhang, B. (2008). Direct hydrothermal synthesis and magnetic property of titanate nanotubes doped magnetic metal ions. Journal of University of Science and Technology Beijing, 15, 644–648.

    Article  CAS  Google Scholar 

  • Wang, J., Huang, B., Wang, Z., Qin, X., & Zhang, X. (2011). Synthesis and characterization of C, N-codoped TiO2 nanotubes/nanorods with visible-light activity. Rare Metals, 30, 161–165.

    Article  Google Scholar 

  • Ye, J., Zou, Z., & Arakawa, H. (2001). Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation. Materials Research Bulletin, 36, 1185–1193.

    Article  Google Scholar 

  • Zou, Z., Ye, J., Sayama, K., & Arakawa, H. (2002). Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M = Mn, Fe, Co, Ni and Cu) photocatalysts. Journal of Photochemistry and Photobiology, A, 148, 65–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CAPES. The Center for Nanoscience and Nanotechnology of UFRGS (CNANO/UFRGS) and Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil) are acknowledged for their contribution to the SEM-EDX and SAXS (Project SAXS1 – 14535) analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João H. Z. dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, G.V., da Silva, W.L., de Oliveira, E.R. et al. Foundry Sands as Supports for Heterogeneous Photocatalysts. Water Air Soil Pollut 227, 373 (2016). https://doi.org/10.1007/s11270-016-3063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3063-0

Keywords

Navigation