Skip to main content

Advertisement

Log in

Application of Nanomaterials for Cadmium Adsorption for Sustainable Treatment of Wastewater: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Many heavy metals, particularly cadmium, are detrimental to both people and the environment when present in large quantities. In wastewater treatment plants, several conventional approaches are employed for cadmium abatement to restore the ecosystem, food supplies, and health of people and animals. Ion exchange, coagulation, membrane filtration, and chemical precipitation are a few examples of ways for removing heavy metals from wastewater, among the many other strategies for removing Cd from wastewater. Recent materials science and chemistry developments have made it possible to remove specific targets like cadmium using nanomaterials, which have very large specific surface areas and numerous functions. Adsorption by using nanomaterials is acknowledged as a viable method for removing dangerous metals from contaminated water, such as Cd, due to its accessibility, improved benefits, and cost-effectiveness when used properly. Adsorption of heavy metals onto the surface of nanomaterial is the simplest, most cost-effective, clean, and sustainable method for the removal of HMs from wastewater, according to the thorough literature mentioned. This review examined the benefits and downsides of removing cadmium from wastewater using nanomaterials, as well as its production, potentially harmful effects on human health, and removal techniques. This paper examines the most current advancements and trends in cadmium mitigation technologies using nanomaterial adsorption. Future research will concentrate on the encapsulation of nanoparticles in order to gather complete and contrasting data on the diverse applications of different nanomaterials in the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and its supporting information file.

References

  • Abril, M., Ruiz, H., & Cumbal, L. H. (2018). Biosynthesis of multicomponent nanoparticles with extract of mortiño (Vaccinium floribundum Kunth) berry: Application on heavy metals removal from water and immobilization in soils. Journal of Nanotechnology, 2018. https://doi.org/10.1155/2018/9504807

  • Alagappan, P. N., Heimann, J., Morrow, L., Andreoli, E., & Barron, A. R. (2017). Easily regenerated readily deployable absorbent for heavy metal removal from contaminated water. Scientific Reports, 7(1), 1–7.

    Article  CAS  Google Scholar 

  • Ali, I., Peng, C., Khan, Z. M., Naz, I., Sultan, M., Ali, M., ... & Ye, T. (2019). Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. Journal of environmental management, 230, 128-150

  • Al-Khaldi, F. A., Abusharkh, B., Khaled, M., Atieh, M. A., Nasser, M. S., Saleh, T. A., ... & Gupta, V. K. (2015). Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. Journal of Molecular Liquids, 204, 255-263

  • Aneyo, I. A., Doherty, F. V., Adebesin, O. A., & Hammed, M. O. (2016). Biodegradation of pollutants in waste water from pharmaceutical, textile and local dye effluent in Lagos, Nigeria. Journal of Health and Pollution, 6(12), 34–42.

    Article  Google Scholar 

  • Azzaza, S., Kumar, R. T., Vijaya, J. J., Bououdina, M. (2017) Nanomaterials for heavy metal removal. In Advanced environmental analysis: Applications of nanomaterials; The Royal Society of Chemistry, 1: 139–166

  • Behbahani, E. S., Dashtian, K., & Ghaedi, M. (2021). Fe3O4-FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous removal of Pb (II), Cd (II), and Cu (II) heavy metal ions. Journal of Hazardous Materials, 410, 124560.

    Article  CAS  Google Scholar 

  • Belhaj, D., Athmouni, K., Ahmed, M. B., Aoiadni, N., El Feki, A., Zhou, J. L., & Ayadi, H. (2018). Polysaccharides from Phormidium versicolor (NCC466) protecting HepG2 human hepatocellular carcinoma cells and rat liver tissues from cadmium toxicity: Evidence from in vitro and in vivo tests. International Journal of Biological Macromolecules, 113, 813–820.

    Article  CAS  Google Scholar 

  • Bilal, M., & Ihsanullah, I. (2022). What makes MXenes emergent materials for the adsorption of heavy metals from water? A critical review. Journal of Water Process Engineering, 49, 103010.

    Article  Google Scholar 

  • Borah, R., Kumari, D., Gogoi, A., Biswas, S., Goswami, R., Shim, J., ... & Kumar, M. (2018). Efficacy and field applicability of Burmese grape leaf extract (BGLE) for cadmium removal: An implication of metal removal from natural water. Ecotoxicology and environmental safety, 147, 585-593

  • Bravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Braissant, O., & Leon-Moreno, C. (2018). Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. Journal of Applied Microbiology, 124(5), 1175–1194.

    Article  CAS  Google Scholar 

  • Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702–712.

    Article  CAS  Google Scholar 

  • Cegłowski, M., Gierczyk, B., Frankowski, M., & Popenda, Ł. (2018). A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. Reactive and Functional Polymers, 131, 64–74.

    Article  Google Scholar 

  • Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., ... & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589

  • Dar, M. I., Green, I. D., Naikoo, M. I., Khan, F. A., Ansari, A. A., & Lone, M. I. (2017). Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard–aphid–beetle food chain. Science of the Total Environment, 584, 1221–1229.

    Article  Google Scholar 

  • Deshpande, B. D., Agrawal, P. S., Yenkie, M. K. N., & Dhoble, S. J. (2020). Prospective of nanotechnology in degradation of wastewater: A new challenge. Nano-Structures & Nano-Objects, 22, 100442. https://doi.org/10.22088/cjim.8.3.135

    Article  CAS  Google Scholar 

  • Edmiston, P. L., Gilbert, A. R., Harvey, Z., & Mellor, N. (2018). Adsorption of short chain carboxylic acids from aqueous solution by swellable organically modified silica materials. Adsorption, 24(1), 53–63.

    Article  CAS  Google Scholar 

  • El-Dib, F. I., Mohamed, D. E., El-Shamy, O. A., & Mishrif, M. R. (2020). Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal. Egyptian Journal of Petroleum, 29(1), 1–7.

    Article  Google Scholar 

  • Fan, H. L., Zhou, S. F., Jiao, W. Z., Qi, G. S., & Liu, Y. Z. (2017). Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydrate Polymers, 174, 1192–1200.

    Article  CAS  Google Scholar 

  • Fang, L., Li, L., Qu, Z., Xu, H., Xu, J., & Yan, N. (2018). A novel method for the sequential removal and separation of multiple heavy metals from wastewater. Journal of Hazardous Materials, 342, 617–624.

    Article  CAS  Google Scholar 

  • Farghali, A. A., Abdel Tawab, H. A., Abdel Moaty, S. A., & Khaled, R. (2017). Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 7(2), 101–111.

    Article  CAS  Google Scholar 

  • Feng, Y., Gong, J. L., Zeng, G. M., Niu, Q. Y., Zhang, H. Y., Niu, C. G., ... & Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical engineering journal, 162(2), 487-494

  • Ghasemi, E., Heydari, A., & Sillanpää, M. (2017). Superparamagnetic Fe3O4@ EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag (I), Hg (II), Mn (II), Zn (II), Pb (II) and Cd (II) from water and soil environmental samples. Microchemical Journal, 131, 51–56.

    Article  CAS  Google Scholar 

  • Gładysz-Płaska, A., Skwarek, E., Budnyak, T. M., & Kołodyńska, D. (2017). Metal ions removal using nano oxide Pyrolox™ material. Nanoscale Research Letters, 12(1), 1–9.

    Article  Google Scholar 

  • Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environmental Chemistry Letters, 17(2), 629–654.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Tyagi, I., Agarwal, S., Sadegh, H., Shahryari-ghoshekandi, R., Yari, M., & Yousefi-nejat, O. (2015). Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. Journal of Molecular Liquids, 206, 129–136. https://doi.org/10.1016/j.molliq.2015.02.015

    Article  CAS  Google Scholar 

  • Gupta, V. K., Agarwal, S., Sadegh, H., Ali, G. A. M., Bharti, A. K., & Hamdy, A. S. (2017). Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. Journal of Molecular Liquids, 237, 466–472. https://doi.org/10.1016/j.molliq.2017.04.113

    Article  CAS  Google Scholar 

  • Habeeb, O. A., Ramesh, K., Ali, G. A. M., & Yunus, R. M. (2017b). Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: Adsorption and kinetic studies. Desalination and Water Treatment, 84, 205–214. https://doi.org/10.5004/dwt.2017.21196

    Article  CAS  Google Scholar 

  • Habeeb O. A. Kanthasamy R. Ali G. A. M. Sethupathi S. Yunus R. B. M. (2017a). Hydrogen sulfide emission sources, regulations, and removal techniques: A review. Reviews in Chemical Engineering, 0(0). https://doi.org/10.1515/revce-2017a-0004

  • Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., ... & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887

  • Hasanzadeh, R., Moghadam, P. N., Bahri-Laleh, N., & Sillanpää, M. (2017). Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@ Fe3O4 nanoparticles. Journal of Colloid and Interface Science, 490, 727–746.

    Article  CAS  Google Scholar 

  • Hayat, M. T., Nauman, M., Nazir, N., Ali, S., & Bangash, N. (2019). Environmental hazards of cadmium: Past, present, and future. In Cadmium toxicity and tolerance in plants (pp. 163–183). Academic Press

  • Huang, D., Hu, Z., Peng, Z., Zeng, G., Chen, G., Zhang, C., ... & Qin, X. (2018). Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating. Journal of Environmental Management, 210, 191-200

  • Idrees, N., Tabassum, B., Abd_Allah, E. F., Hashem, A., Sarah, R., & Hashim, M. (2018). Groundwater contamination with cadmium concentrations in some West UP Regions, India. Saudi Journal of Biological Sciences, 25(7), 1365-1368

  • Irshad, M. A., Shakoor, M. B., Ali, S., Nawaz, R., & Rizwan, M. (2019). Synthesis and application of titanium dioxide nanoparticles for removal of cadmium from wastewater: Kinetic and equilibrium study. Water, Air, & Soil Pollution, 230(12), 1–10.

    Article  Google Scholar 

  • Irshad, M. A., Nawaz, R., ur Rehman, M. Z., Imran, M., Ahmad, J., Ahmad, S., ... & Ali, S. (2020). Synthesis and characterization of titanium dioxide nanoparticles by chemical and green methods and their antifungal activities against wheat rust. Chemosphere, 258, 127352

  • Irshad, M. A., Nawaz, R., ur Rehman, M. Z., Adrees, M., Rizwan, M., Ali, S., ... & Tasleem, S. (2021). Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicology and Environmental Safety, 212, 111978

  • Irshad, M. A., Shakoor, M. B., Nawaz, R., Yasmeen, T., Arif, M. S., Rizwan, M., ... & Ali, S. (2022). Green and eco-friendly synthesis of TiO2 nanoparticles and their application for removal of cadmium from wastewater: reaction kinetics study. Zeitschrift für Physikalische Chemie, 236(5), 637-657

  • Jacquet, A., Arnaud, J., Hininger-Favier, I., Hazane-Puch, F., Couturier, K., Lénon, M., ... & Demeilliers, C. (2018). Impact of chronic and low cadmium exposure of rats: Sex specific disruption of glucose metabolism. Chemosphere, 207, 764-773

  • Jiaxin, S., Shengchen, W., Yirong, C., Shuting, W., & Shu, L. (2020). Cadmium exposure induces apoptosis, inflammation and immunosuppression through CYPs activation and antioxidant dysfunction in common carp neutrophils. Fish & Shellfish Immunology, 99, 284–290.

    Article  Google Scholar 

  • Kamarudin, N. S., Jusoh, R., Setiabudi, H. D., Sukor, N. F., & Shariffuddin, J. H. (2021). Potential nanomaterials application in wastewater treatment: Physical, chemical and biological approaches. Materials Today: Proceedings, 42, 107–114.

    Google Scholar 

  • Karami, H. (2013). Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal, 219, 209–216.

    Article  CAS  Google Scholar 

  • Kim, E. J., Lee, C. S., Chang, Y. Y., & Chang, Y. S. (2013). Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Applied Materials & Interfaces, 5(19), 9628–9634.

    Article  CAS  Google Scholar 

  • Korina, E., Stoilova, O., Manolova, N., & Rashkov, I. (2018). Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. Journal of Environmental Chemical Engineering, 6, 2075–2084.

    Article  CAS  Google Scholar 

  • Kowalik, R., Latosińska, J., & Gawdzik, J. (2021). Risk analysis of heavy metal accumulation from sewage sludge of selected wastewater treatment plants in Poland. Water, 13(15), 2070.

    Article  CAS  Google Scholar 

  • Kumar, M., & Pakshirajan, K. (2021). Continuous removal and recovery of metals from wastewater using inverse fluidized bed sulfidogenic bioreactor. Journal of Cleaner Production, 284, 124769.

    Article  CAS  Google Scholar 

  • Li, Y., He, J., Zhang, K., Liu, T., Hu, Y., Chen, X., ... & Liu, J. (2019). Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC advances, 9(1), 397-407

  • Liang, X., Zang, Y., Xu, Y., Tan, X., Hou, W., Wang, L., & Sun, Y. (2013). Sorption of metal cations on layered double hydroxides. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 433, 122–131.

    Article  CAS  Google Scholar 

  • Liao, Q. L., Liu, C., Wu, H. Y., Jin, Y., Hua, M., Zhu, B. W., ... & Huang, L. (2015). Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town. Science of the Total Environment, 514, 26-32

  • Liu, J. F., Zhao, Z. S., & Jiang, G. B. (2008). Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science & Technology, 42(18), 6949–6954.

    Article  CAS  Google Scholar 

  • Liu, X., Jiang, B., Yin, X., Ma, H., & Hsiao, B. S. (2020). Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Separation and Purification Technology, 233, 115976.

    Article  CAS  Google Scholar 

  • Lu, F., & Astruc, D. (2018). Nanomaterials for removal of toxic elements from water. Coordination Chemistry Reviews, 356, 147–164.

    Article  CAS  Google Scholar 

  • Luo, C., Wei, R., Guo, D., Zhang, S., & Yan, S. (2013). Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chemical Engineering Journal, 225, 406–415.

    Article  CAS  Google Scholar 

  • Madrakian, T., Afkhami, A., Zadpour, B., & Ahmadi, M. (2015). New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. Journal of Industrial and Engineering Chemistry, 21, 1160–1166.

    Article  CAS  Google Scholar 

  • Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11(3), 843–872.

    Article  CAS  Google Scholar 

  • Masood, N., Batool, S., & Farooqi, A. (2021). Groundwater pollution in Pakistan. In Global Groundwater (pp. 309–322). Elsevier.

  • Nagarajah, R., Wong, K. T., Lee, G., Chu, K. H., Yoon, Y., Kim, N. C., & Jang, M. (2017). Synthesis of a unique nanostructured magnesium oxide coated magnetite cluster composite and its application for the removal of selected heavy metals. Separation and Purification Technology, 174, 290–300.

    Article  CAS  Google Scholar 

  • Najafi, M., Yousefi, Y., & Rafati, A. A. (2012). Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Separation and Purification Technology, 85, 193–205.

    Article  CAS  Google Scholar 

  • Niu, Y., Jiang, X., Wang, K., Xia, J., Jiao, W., Niu, Y., & Yu, H. (2020). Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu China. Science of the Total Environment, 700, 134509.

    Article  CAS  Google Scholar 

  • Omar, A. H., Ramesh, K., Gomaa, A. M., & Rosli, B. M. Y. (2017). Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: Experiment, optimization, equilibrium and kinetic studies. Journal of Wuhan University of Technology-Mater Sci Ed, 32(2), 305–320.

    Article  CAS  Google Scholar 

  • Othmani, A., Magdouli, S., Kumar, P. S., Kapoor, A., Chellam, P. V., & Gökkuş, Ö. (2022). Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. Environmental Research, 204, 111916.

    Article  CAS  Google Scholar 

  • Pedersen, K. B., Lejon, T., Jensen, P. E., & Ottosen, L. M. (2017). Simultaneous electrodialytic removal of PAH, PCB, TBT and heavy metals from sediments. Journal of Environmental Management, 198, 192–202.

    Article  CAS  Google Scholar 

  • Peer, F. E., Bahramifar, N., & Younesi, H. (2018). Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets. Journal of the Taiwan Institute of Chemical Engineers, 87, 225–240.

    Article  Google Scholar 

  • Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water, 4(1), 1–15.

    Google Scholar 

  • Qiao, K., Tian, W., Bai, J., Wang, L., Zhao, J., Du, Z., & Gong, X. (2019). Application of magnetic adsorbents based on iron oxide nanoparticles for oil spill remediation: A review. Journal of the Taiwan Institute of Chemical Engineers, 97, 227–236.

    Article  CAS  Google Scholar 

  • Rad, L. R., Momeni, A., Ghazani, B. F., Irani, M., Mahmoudi, M., & Noghreh, B. (2014). Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chemical Engineering Journal, 256, 119–127.

    Article  CAS  Google Scholar 

  • Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135.

    Google Scholar 

  • Rivas, B. L., Pereira, E. D., Palencia, M., & Sánchez, J. (2011). Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Progress in Polymer Science, 36(2), 294–322.

    Article  CAS  Google Scholar 

  • Rodriguez-Hernandez, M. C., Bonifas, I., Alfaro-De la Torre, M. C., Flores-Flores, J. L., Bañuelos-Hernández, B., & Patiño-Rodríguez, O. (2015). Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia: A study of two pore channel (TPC1) gene responses. Environmental and Experimental Botany, 115, 38–48.

    Article  CAS  Google Scholar 

  • Sadegh, H., & Ali, G. A. (2021). Potential applications of nanomaterials in wastewater treatment: Nanoadsorbents performance. In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials (pp. 1230–1240). IGI Global.

  • Saini, S., & Dhania, G. (2020). Cadmium as an environmental pollutant: Ecotoxicological effects, health hazards, and bioremediation approaches for its detoxification from contaminated sites. In Bioremediation of industrial waste for environmental safety (pp. 357–387). Springer, Singapore.

  • Saleh, T. A., Mustaqeem, M., & Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management, 17, 100617.

    Article  CAS  Google Scholar 

  • Shaari, N. E. M., Tajudin, M. T. F. M., Khandaker, M. M., Majrashi, A., Alenazi, M. M., Abdullahi, U. A., & Mohd, K. S. (2022). Cadmium toxicity symptoms and uptake mechanism in plants: A review. Brazilian Journal of Biology, 84.https://doi.org/10.1590/1519-6984.252143

  • Shakya, M., Rene, E. R., Nancharaiah, Y. V., & Lens, P. N. (2018). Fungal-based nanotechnology for heavy metal removal. Nanotechnology, Food Security and Water Treatment, 229–253. https://doi.org/10.1007/978-3-319-70166-0_7

  • Shan, R. R., Yan, L. G., Yang, K., Hao, Y. F., & Du, B. (2015). Adsorption of Cd (II) by Mg–Al–CO3-and magnetic Fe3O4/Mg–Al–CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies. Journal of Hazardous Materials, 299, 42–49.

    Article  CAS  Google Scholar 

  • Shi, T., Jia, S., Chen, Y., Wen, Y., Du, C., Guo, H., & Wang, Z. (2009). Adsorption of Pb (II), Cr (III), Cu (II), Cd (II) and Ni (II) onto a vanadium mine tailing from aqueous solution. Journal of Hazardous Materials, 169(1–3), 838–846.

    Article  CAS  Google Scholar 

  • Shi, L., Cao, H., Luo, J., Liu, P., Wang, T., Hu, G., & Zhang, C. (2017). Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in duck. Ecotoxicology and Environmental Safety, 145, 24–31.

    Article  CAS  Google Scholar 

  • Sikiru, S., Ayodele, O. A., Sanusi, Y. K., Adebukola, S. Y., Soleimani, H., Yekeen, N., & Haslija, A. A. (2022). A comprehensive review on nanotechnology application in wastewater treatment a case study of metal-based using green synthesis. Journal of Environmental Chemical Engineering, 108065. https://doi.org/10.1016/j.jece.2022.108065

  • Singla, A. (2022). Review of biological treatment solutions and role of nanoparticles in the treatment of wastewater generated by diverse industries. Nanotechnology for Environmental Engineering, 1–13. https://doi.org/10.1007/s41204-022-00267-9

  • Skipper, A., Sims, J. N., Yedjou, C. G., & Tchounwou, P. B. (2018). Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. International Journal of Environmental Research and Public Health, 13(1), 88.

  • Sounthararajah, D. P., Loganathan, P., Kandasamy, J., & Vigneswaran, S. (2015). Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. Journal of Hazardous Materials, 287, 306–316.

    Article  CAS  Google Scholar 

  • Sun, W., Jiang, B., Wang, F., & Xu, N. (2015). Effect of carbon nanotubes on Cd (II) adsorption by sediments. Chemical Engineering Journal, 264, 645–653.

    Article  CAS  Google Scholar 

  • Thangavelu, L., Veeraragavan, G. R., Mallineni, S. K., Devaraj, E., Parameswari, R. P., Syed, N. H., ... & Bhawal, U. K. (2022). Role of nanoparticles in environmental remediation: An insight into heavy metal pollution from dentistry. Bioinorganic Chemistry and Applications, 2022. https://doi.org/10.1155/2022/1946724

  • Vikrant, K., Kumar, V., Vellingiri, K., & Kim, K. H. (2019). Nanomaterials for the abatement of cadmium (II) ions from water/wastewater. Nano Research, 12(7), 1489–1507.

    Article  CAS  Google Scholar 

  • Wadhawan, S., Jain, A., Nayyar, J., & Mehta, S. K. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. Journal of Water Process Engineering, 33, 101038.

    Article  Google Scholar 

  • Wang, K., Gu, J., & Yin, N. (2017). Efficient removal of Pb (II) and Cd (II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Industrial & Engineering Chemistry Research, 56(7), 1880–1887.

    Article  CAS  Google Scholar 

  • White, A. J., O’Brien, K. M., Jackson, B. P., & Karagas, M. R. (2018). Urine and toenail cadmium levels in pregnant women: A reliability study. Environment International, 118, 86–91.

    Article  CAS  Google Scholar 

  • Wu, C. M., Naseem, S., Chou, M. H., Wang, J. H., & Jian, Y. Q. (2019). Recent advances in tungsten-oxide-based materials and their applications. Frontiers in Materials, 6, 49.

    Article  Google Scholar 

  • Yang, G., Tang, L., Lei, X., Zeng, G., Cai, Y., Wei, X., ... & Zhang, Y. (2014). Cd (II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Applied Surface Science, 292, 710-716

  • Yuan, X., An, N., Zhu, Z., Sun, H., Zheng, J., Jia, M., ... & Liu, N. (2018). Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions. Process Safety and Environmental Protection, 119, 320-329

  • Zahra, M. H., Hamza, M. F., El-Habibi, G., Abdel-Rahman, A. A. H., Mira, H. I., Wei, Y., ... & Hamad, N. A. (2022). Synthesis of a novel adsorbent based on chitosan magnetite nanoparticles for the high sorption of Cr (VI) ions: A study of photocatalysis and recovery on tannery effluents. Catalysts, 12(7), 678

  • Zare, K., Gupta, V. K., Moradi, O., Makhlouf, A. S. H., Sillanpää, M., Nadagouda, M. N., & Kazemi, M. (2015a). A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: A review. Journal of Nanostructure in Chemistry, 5(2), 227–236. https://doi.org/10.1007/s40097-015-0158-x

    Article  CAS  Google Scholar 

  • Zare, K., Sadegh, H., Shahryari-ghoshekandi, R., Maazinejad, B., Ali, V., Tyagi, I., & Gupta, V. K. (2015b). Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents. Journal of Molecular Liquids, 212, 266–271. https://doi.org/10.1016/j.molliq.2015.09.027

    Article  CAS  Google Scholar 

  • Zeng, T., Yu, Y., Li, Z., Zuo, J., Kuai, Z., Jin, Y., ... & Peng, C. (2019). 3D MnO2 nanotubes@ reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Materials Chemistry and Physics, 231, 105-108

  • Zhang, Y., Liu, Q., Yin, H., & Li, S. (2020). Cadmium exposure induces pyroptosis of lymphocytes in carp pronephros and spleens by activating NLRP3. Ecotoxicology and Environmental Safety, 202, 110903.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, Y., Wang, J., Wang, X., Liu, Y., Wang, S., & Kong, F. (2021). Interactions of chlorpyrifos degradation and Cd removal in iron-carbon-based constructed wetlands for treating synthetic farmland wastewater. Journal of Environmental Management, 299, 113559.

    Article  CAS  Google Scholar 

  • Zhao, G., Li, J., Ren, X., Chen, C., & Wang, X. (2011). Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science & Technology, 45(24), 10454–10462.

    Article  CAS  Google Scholar 

  • Zhao, F., Peydayesh, M., Ying, Y., Mezzenga, R., & Ping, J. (2020b). Transition metal dichalcogenide–silk nanofibril membrane for one-step water purification and precious metal recovery. ACS Applied Materials & Interfaces, 12(21), 24521–24530.

    Article  CAS  Google Scholar 

  • Zhao, C., Wang, X., Zhang, S., Sun, N., Zhou, H., Wang, G., ... & Zhao, H. (2020a). Porous carbon nanosheets functionalized with Fe 3 O 4 nanoparticles for capacitive removal of heavy metal ions from water. Environmental Science: Water Research & Technology, 6(2), 331-340

  • Zhu, X., Song, T., Lv, Z., & Ji, G. (2016). High-efficiency and low-cost α-Fe2O3 nanoparticles-coated volcanic rock for Cd (II) removal from wastewater. Process Safety and Environmental Protection, 104, 373–381.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The facilitation and financial support from the Department of Environmental Sciences, The University of Lahore, Pakistan, and technical assistance provided by Gdansk University of Technology, Gdansk, Poland, is greatly acknowledged. The authors are also thankful to the School of Forest Sciences, University of Eastern Finland, Finland, and the Research Institute for Advanced Industrial Technology, Korea University, the Republic of Korea for providing moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Atif Irshad.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, M.A., Nawaz, R., Wojciechowska, E. et al. Application of Nanomaterials for Cadmium Adsorption for Sustainable Treatment of Wastewater: a Review. Water Air Soil Pollut 234, 54 (2023). https://doi.org/10.1007/s11270-023-06064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06064-7

Keywords

Navigation