Skip to main content
Log in

An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19C:33–41

    Article  Google Scholar 

  • Alpha CJ, Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81(3):1147–1156

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bauer K, Garbe D, Surburg H (1997) Common fragrance and flavor materials. Wiley, New York, pp 50–54

    Book  Google Scholar 

  • Bedoukian PZ (1986) Perfumery and flavoring synthetics, 3rd edn. Allured, Carol Stream, pp 283–300

    Google Scholar 

  • Bhat WW, Dhar N, Razdan S, Rana S, Mehra R, Nargotra A, Dhar RS, Ashraf N, Vishwakarma R, Lattoo SK (2013) Molecular characterization of UGT94F2 and UGT86C4, two glycosyltransferases from Picrorhiza kurrooa: comparative structural insight and evaluation of substrate recognition. PLoS ONE 8(9):e73804

    Article  CAS  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  Google Scholar 

  • Chen Y, Bao J, Kim IK, Siewers V, Nielsen J (2014) Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng 22:104–109

    Article  Google Scholar 

  • Croteau RB, Davis EM, Ringer KL, Wildung MR (2005) (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92(12):562–577

    Article  CAS  Google Scholar 

  • Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3

    Article  Google Scholar 

  • Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, van Doorn MM, Legué V, Palme K, Schnitzler JP, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279

    Article  CAS  Google Scholar 

  • Eshkol N, Sendovski M, Bahalul M, Katz-Ezov T, Kashi Y, Fishman A (2009) Production of 2-phenylethanol from l-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106(2):534–542

    Article  CAS  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381

    Article  CAS  Google Scholar 

  • Girlanda M, Ghignone S, Luppi AM (2002) Diversity of sterile root-associated fungi of two Mediterranean plants. New Phytol 155:481–498

    Article  Google Scholar 

  • Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99(8):3395–3405

    Article  CAS  Google Scholar 

  • Kamatou GP, Vermaak I, Viljoen AM, Lawrence BM (2013) Menthol: a simple monoterpene with remarkable biological properties. Phytochemistry 96:15–25

    Article  CAS  Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  Google Scholar 

  • Lide DR (ed) (1995) Handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • McCloud TG (2010) High throughput extraction of plant, marine and fungal specimens for microbiomes. Annu Rev Phytopathol 49:291–315

    Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351

    Article  CAS  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127

    Article  Google Scholar 

  • Patel T, Ishiuji Y, Yosipovitch G (2007) Menthol: a refreshing look at this ancient compound. J Am Acad Dermatol 57:873–878

    Article  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hassan S, Amna T, Ahmad B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralinlignans. J Biotechnol 122:494–510

    Article  CAS  Google Scholar 

  • Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK, Abdin MZ, Riyaz-Ul-Hassan S (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. SpringerPlus 2:8

    Article  Google Scholar 

  • Ringer KL, McConkey ME, Davis EM, Rushing GW, Croteau R (2003) Monoterpene double-bond reductases of the (−)-menthol biosynthetic pathway: isolation and characterization of cDNAs encoding (−)-isopiperitenone reductase and (+)-pulegone reductase of peppermint. Arch Biochem Biophys 418:80–92

    Article  CAS  Google Scholar 

  • Riyaz-Ul-Hassan S, Strobel G, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the Mycodiesel® producing endophyte-Hypoxylon sp. CI-4. Microbiology 158:465–473

    Article  CAS  Google Scholar 

  • Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23(1):29–35

    Article  CAS  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–1114

    Article  CAS  Google Scholar 

  • Sassa T, Kenmoku H, Sato M, Murayama T, Kato N (2003) (+)-Menthol and its hydroxyl derivatives, novel fungal monoterpenols from the fusicoccin producing fungi, Phomopsis amygdale F6a and Niigata 2. Biosci Biotechnol Biochem 67:475–479

    Article  CAS  Google Scholar 

  • Schalchli H, Tortella GR, Rubilar O, Parra L, Hormazabal E, Quiroz A (2014) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 8:1–9

    Google Scholar 

  • Schwarz M, Kopcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245

    Article  CAS  Google Scholar 

  • Sebastianes FL, Cabedo N, El Aouad N, Valente AM, Lacava PT, Azevedo JL, Pizzirani-Kleiner AA, Cortes D (2012) 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 65(5):622–663

    Article  CAS  Google Scholar 

  • Shaw JJ, Berbasova T, Sasaki T, Jefferson-George K, Spakowicz DJ, Dunican BF, Portero CE, Narvaez-Trujillo A, Strobel SA (2015) Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with common specificity determinants to the plant synthases. J Biol Chem 290(13):8511–8526

    Article  CAS  Google Scholar 

  • Starks CM, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820

    Article  CAS  Google Scholar 

  • Stierle A, Strobel GA, Stierle DB (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  Google Scholar 

  • Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  CAS  Google Scholar 

  • Strobel GA (2015) Bioprospecting-fuels from fungi. Biotechnol Lett 37(5):973–982

    Article  CAS  Google Scholar 

  • Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94

    Article  CAS  Google Scholar 

  • Stuppner H, Wagner H (1989) New cucurbitacin glycosides from Picrorhiza kurrooa. Planta Med 55:559–563

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tan YY, Spiering MJ, Scott V, Lane GA, Christensen MJ, Schmid J (2001) In planta regulation of extension of an endophytic fungus and maintenance of high metabolic rates in its mycelium in the absence of apical extension. Appl Environ Microbiol 67(12):5377–5383

    Article  CAS  Google Scholar 

  • Tomsheck A, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp. an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microbial Ecol 60:903–914

    Article  CAS  Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99(7):2955–2965

    Article  CAS  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Below ground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte—the evolution of a term, a clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R, Guo G, Chen L, Zhang Y, Huang X, Tang Q, Liu H, Bellgard MI, Qiu D, Lai J, Hoffman A (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom 15:69

    Article  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article bears the Institutional Publication No. IIIM/1794/2015. The authors acknowledge the financial support from the CSIR 12th FYP project, PMSI (BSC0117) and MLP1008. The first author is grateful to the Indian Council of Medical Research, New Delhi for a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Riyaz-Ul-Hassan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadri, M., Deshidi, R., Shah, B.A. et al. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds. World J Microbiol Biotechnol 31, 1647–1654 (2015). https://doi.org/10.1007/s11274-015-1910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-015-1910-6

Keywords

Navigation