Skip to main content
Log in

Latency-aware service migration with decision theory for Internet of Vehicles in mobile edge computing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the Internet of Vehicles driven by mobile edge computing, the service requests are offloaded to the roadside units (RSUs) via wireless network, reducing the service latency and enhancing the utilization of resources of RSUs. However, the high mobility of vehicles leads to the frequent switching of services, decreasing the quality of service, which fails to meet the requirements of latency-sensitive vehicular services. In this paper, we proposed a latency-aware service migration method with decision theory, named LSMD. Specifically, we first model the network architecture and introduce the transmission and computation of the service requests in detail. Then, considering the high mobility of vehicles, we analyze the dynamic change of vehicle locations and transform the service migration problem into an uncertain decision optimization problem. Afterward, we find the optimal service migration strategy with the objectives of minimizing the service latency and balancing the workload on RSUs. Finally, numerical experiment results on real-world datasets demonstrate that our method outperforms the other two baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, Z., Zhao, D., Ni, M., Li, L., & Li, C. (2020). Collaborative mobile computation offloading to vehicle-based cloudlets. IEEE Transactions on Vehicular Technology, 70(1), 768–781. https://doi.org/10.1109/TVT.2020.3043296

    Article  Google Scholar 

  2. Labriji, I., Meneghello, F., Cecchinato, D., Sesia, S., Perraud, E., Strinati, E. C., & Rossi, M. (2021). Mobility aware and dynamic migration of mec services for the internet of vehicles. IEEE Transactions on Network and Service Management, 18(1), 570–584. https://doi.org/10.1109/TNSM.2021.3052808

    Article  Google Scholar 

  3. Wang, F., Li, G., Wang, Y., Rafique, W., Khosravi, M. R., Liu, G., et al. (2022). Privacy-aware traffic flow prediction based on multi-party sensor data with zero trust in smart city. ACM Transactions on Internet Technology. https://doi.org/10.1145/3511904.

    Article  Google Scholar 

  4. Zhang, G., Zhang, S., Zhang, W., Shen, Z., & Wang, L. (2021). Joint service caching, computation offloading and resource allocation in mobile edge computing systems. IEEE Transactions on Wireless Communications, 20(8), 5288–5300. https://doi.org/10.1109/TWC.2021.3066650

    Article  Google Scholar 

  5. Ren, L., Liu, Y., Wang, X., Lü, J., & Deen, M. J. (2020). Cloud-edge based lightweight temporal convolutional networks for remaining useful life prediction in iot. IEEE Internet of Things Journal, 8(16), 12578–12587. https://doi.org/10.1109/JIOT.2020.3008170

    Article  Google Scholar 

  6. Yuan, L., He, Q., Chen, F., Zhang, J., Qi, L., Xu, X., Xiang, Y., & Yang, Y. (2021). Csedge: Enabling collaborative edge storage for multi-access edge computing based on blockchain. IEEE Transactions on Parallel and Distributed Systems, 33(8), 1873–1887. https://doi.org/10.1109/TPDS.2021.3131680

    Article  Google Scholar 

  7. Xia, X., Chen, F., He, Q., Cui, G., Grundy, J., Abdelrazek, M., Xu, X., & Jin, H. (2021). Data, user and power allocations for caching in multi-access edge computing. IEEE Transactions on Parallel and Distributed Systems, 33(5), 1144–1155. https://doi.org/10.1109/TPDS.2021.3104241

    Article  Google Scholar 

  8. Ren, Y., Chen, X., Guo, S., Guo, S., & Xiong, A. (2021). Blockchain-based vec network trust management: A drl algorithm for vehicular service offloading and migration. IEEE Transactions on Vehicular Technology, 70(8), 8148–8160. https://doi.org/10.1109/TVT.2021.3092346

    Article  Google Scholar 

  9. Xu, X., Fang, Z., Zhang, J., He, Q., Yu, D., Qi, L., & Dou, W. (2021). Edge content caching with deep spatiotemporal residual network for iov in smart city. ACM Transactions on Sensor Networks (TOSN), 17(3), 1–33. https://doi.org/10.1145/3447032

    Article  Google Scholar 

  10. Ma, L., Yi, S., Carter, N., & Li, Q. (2018). Efficient live migration of edge services leveraging container layered storage. IEEE Transactions on Mobile Computing, 18(9), 2020–2033. https://doi.org/10.1109/TMC.2018.2871842

    Article  Google Scholar 

  11. Qi, L., Hu, C., Zhang, X., Khosravi, M. R., Sharma, S., Pang, S., & Wang, T. (2020). Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment. IEEE Transactions on Industrial Informatics, 17(6), 4159–4167. https://doi.org/10.1109/TII.2020.3012157

    Article  Google Scholar 

  12. Addad, R. A., Dutra, D. L. C., Bagaa, M., Taleb, T., & Flinck, H. (2020). Fast service migration in 5g trends and scenarios. IEEE Network, 34(2), 92–98. https://doi.org/10.1109/MNET.001.1800289

    Article  Google Scholar 

  13. Zhou, X., Ge, S., Qiu, T., Li, K., & Atiquzzaman, M. (2021). Energy-efficient service migration for multi-user heterogeneous dense cellular networks. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TVT.2021.3092346

    Article  Google Scholar 

  14. Chen, M., Li, W., Fortino, G., Hao, Y., Hu, L., & Humar, I. (2019). A dynamic service migration mechanism in edge cognitive computing. ACM Transactions on Internet Technology (TOIT), 19(2), 1–15. https://doi.org/10.1145/3239565

    Article  Google Scholar 

  15. Wang, W., Ge, S., & Zhou, X. (2020). Location-privacy-aware service migration in mobile edge computing. In 2020 IEEE wireless communications and networking conference (WCNC), pp. 1–6. IEEE.

  16. Zhang, Y., Wang, K., He, Q., Chen, F., Deng, S., Zheng, Z., & Yang, Y. (2019). Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Transactions on Services Computing, 14(5), 1333–1344. https://doi.org/10.1109/TSC.2019.2891517

    Article  Google Scholar 

  17. Addad, R.A., Dutra, D.L.C., Bagaa, M., Taleb, T., Flinck, H. (2018). Towards a fast service migration in 5g. In 2018 IEEE conference on standards for communications and networking (CSCN), pp. 1–6. IEEE.

  18. Lu, W., Meng, X., & Guo, G. (2018). Fast service migration method based on virtual machine technology for mec. IEEE Internet of Things Journal, 6(3), 4344–4354. https://doi.org/10.1109/JIOT.2018.2884519

    Article  Google Scholar 

  19. Mukhopadhyay, A., Ruffini, M. (2020)Learning automata for multi-access edge computing server allocation with minimal service migration. In ICC 2020-2020 IEEE international conference on communications (ICC), pp. 1–6. IEEE

  20. Ray, K., Banerjee, A. (2020). Trace-driven modeling and verification of a mobility-aware service allocation and migration policy for mobile edge computing. In 2020 IEEE international conference on web services (ICWS), pp. 310–317. IEEE.

  21. Li, X., Chen, S., Zhou, Y., Chen, J., & Feng, G. (2021). Intelligent service migration based on hidden state inference for mobile edge computing. IEEE Transactions on Cognitive Communications and Networking. https://doi.org/10.1109/TCCN.2021.3103511

    Article  Google Scholar 

  22. Zhou, Z., Li, X., Wang, X., Liang, Z., Sun, G., Luo, G. (2020). Hardware-assisted service live migration in resource-limited edge computing systems. In 2020 57th ACM/IEEE design automation conference (DAC), pp. 1–6. IEEE.

  23. Abouaomar, A., Mlika, Z., Filali, A., Cherkaoui, S., Kobbane, A. (2021). A deep reinforcement learning approach for service migration in mec-enabled vehicular networks. In 2021 IEEE 46th conference on local computer networks (LCN), pp. 273–280 . IEEE.

  24. Peng, Y., Liu, L., Zhou, Y., Shi, J., Li, J. (2019). Deep reinforcement learning-based dynamic service migration in vehicular networks. In 2019 IEEE Global communications conference (GLOBECOM), pp. 1–6. IEEE.

  25. Zhao, D., Yang, T., Jin, Y., Xu, Y. (2017). A service migration strategy based on multiple attribute decision in mobile edge computing. In: 2017 IEEE 17th international conference on communication technology (ICCT), pp. 986–990. IEEE.

  26. Xu, J., Ma, X., Zhou, A., Duan, Q., & Wang, S. (2020). Path selection for seamless service migration in vehicular edge computing. IEEE Internet of Things Journal, 7(9), 9040–9049. https://doi.org/10.1109/JIOT.2020.3000300

    Article  Google Scholar 

  27. Chen, R., Lu, H., Lu, Y., Liu, J. (2020). Msdf: A deep reinforcement learning framework for service function chain migration. In 2020 IEEE Wireless communications and networking conference (WCNC), pp. 1–6. IEEE.

  28. Chen, C., Li, K., Teo, S. G., Zou, X., Li, K., & Zeng, Z. (2020). Citywide traffic flow prediction based on multiple gated spatio-temporal convolutional neural networks. ACM Transactions on Knowledge Discovery from Data (TKDD), 14(4), 1–23. https://doi.org/10.1145/3385414

    Article  Google Scholar 

  29. Qin, Z., Cen, C., Jie, W., Gee, T.S., Chandrasekhar, V.R., Peng, Z., Zeng, Z.(2018) Knowledge-graph based multi-target deep-learning models for train anomaly detection. In 2018 International Conference on Intelligent Rail Transportation (ICIRT), pp. 1–5 . IEEE.

  30. Yang, X., Li, H., Ni, L., & Li, T. (2021). Application of artificial intelligence in precision marketing. Journal of Organizational and End User Computing (JOEUC), 33(4), 209–219. https://doi.org/10.4018/JOEUC.20210701.oa10

    Article  Google Scholar 

  31. Baskaran, N., & Eswari, R. (2021). Efficient vm selection strategies in cloud datacenter using fuzzy soft set. Journal of Organizational and End User Computing (JOEUC), 33(5), 153–179. https://doi.org/10.4018/JOEUC.20210701.oa10

    Article  Google Scholar 

  32. Ren, L., Laili, Y., Li, X., & Wang, X. (2019). Coding-based large-scale task assignment for industrial edge intelligence. IEEE Transactions on Network Science and Engineering, 7(4), 2286–2297. https://doi.org/10.1109/TNSE.2019.2942042

    Article  Google Scholar 

  33. Wang, X., Yang, L. T., Xie, X., Jin, J., & Deen, M. J. (2017). A cloud-edge computing framework for cyber-physical-social services. IEEE Communications Magazine, 55(11), 80–85. https://doi.org/10.1109/MCOM.2017.1700360

    Article  Google Scholar 

  34. Xu, X., Tian, H., Zhang, X., Qi, L., He, Q., & Dou, W. (2022). Discov: Distributed covid-19 detection on x-ray images with edge-cloud collaboration. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2022.3142265

    Article  Google Scholar 

  35. Qi, L., Yang, Y., Zhou, X., Rafique, W., & Ma, J. (2021). Fast anomaly identification based on multi-aspect data streams for intelligent intrusion detection toward secure industry 40. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2021.3139363

    Article  Google Scholar 

  36. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., & Leung, K. K. (2019). Dynamic service migration in mobile edge computing based on markov decision process. IEEE/ACM Transactions on Networking, 27(3), 1272–1288. https://doi.org/10.1109/TNET.2019.2916577

    Article  Google Scholar 

  37. Li, J., Chen, L., & Chen, J. (2021). Enabling technologies for low-latency service migration in 5g transport networks. Journal of Optical Communications and Networking, 13(2), 200–210. https://doi.org/10.1364/JOCN.400772

    Article  Google Scholar 

  38. Gao, Z., Jiao, Q., Xiao, K., Wang, Q., Mo, Z., Yang, Y.(2019) Deep reinforcement learning based service migration strategy for edge computing. In 2019 IEEE international conference on service-oriented system engineering (SOSE), pp. 116–1165 . IEEE

  39. Zhang, M., Huang, H., Rui, L., Hui, G., Wang, Y., Qiu, X. (2020). A service migration method based on dynamic awareness in mobile edge computing. In NOMS 2020-2020 IEEE/IFIP network operations and management symposium, pp. 1–7 . IEEE.

  40. Addad, R. A., Dutra, D. L. C., Taleb, T., & Flinck, H. (2021). Ai-based network-aware service function chain migration in 5g and beyond networks. IEEE Transactions on Network and Service Management, 19(1), 472–484. https://doi.org/10.1109/TNSM.2021.3074618

    Article  Google Scholar 

  41. Cao, S., Wang, Y., Xu, C. (2017). Service migrations in the cloud for mobile accesses: A reinforcement learning approach. In 2017 International Conference on Networking, Architecture, and Storage (NAS), pp. 1–10. IEEE.

  42. Liang, Z., Liu, Y., Lok, T.-M., & Huang, K. (2021). Multi-cell mobile edge computing: Joint service migration and resource allocation. IEEE Transactions on Wireless Communications, 20(9), 5898–5912. https://doi.org/10.1109/TWC.2021.3070974

    Article  Google Scholar 

  43. Chen, L., Shen, C., Zhou, P., & Xu, J. (2019). Collaborative service placement for edge computing in dense small cell networks. IEEE Transactions on Mobile Computing, 20(2), 377–390. https://doi.org/10.1109/TMC.2019.2945956

    Article  Google Scholar 

  44. Boukouvala, F., Misener, R., & Floudas, C. A. (2016). Global optimization advances in mixed-integer nonlinear programming, minlp, and constrained derivative-free optimization, cdfo. European Journal of Operational Research, 252(3), 701–727. https://doi.org/10.1016/j.ejor.2015.12.018

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, F., Huang, X., Nian, H., He, Q., Yang, Y., Zhang, C. (2019). Cost-effective edge server placement in edge computing. In Proceedings of the 2019 5th international conference on systems, control and Communications, pp. 6–10.

  46. Yi, C., Cai, J., & Su, Z. (2019). A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications. IEEE Transactions on Mobile Computing, 19(1), 29–43. https://doi.org/10.1109/TMC.2019.2891736

    Article  Google Scholar 

  47. Ning, Z., Zhang, K., Wang, X., Guo, L., Hu, X., Huang, J., Hu, B., & Kwok, R. Y. (2020). Intelligent edge computing in internet of vehicles: a joint computation offloading and caching solution. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2212–2225. https://doi.org/10.1109/TITS.2020.2997832

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Jiangsu Province of China under Grant BK20211284 and in part by the Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps Under Grant 2020DB005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Xu, X. Latency-aware service migration with decision theory for Internet of Vehicles in mobile edge computing. Wireless Netw (2022). https://doi.org/10.1007/s11276-022-02978-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-022-02978-y

Keywords

Navigation