Skip to main content
Log in

Improved DV-Hop based on parallel and compact whale optimization algorithm for localization in wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2022

This article has been updated

Abstract

Improving localization performance is one of the critical issues in Wireless Sensor Networks (WSN). As a range-free localization algorithm, Distance Vector-Hop(DV-Hop) is well-known for its simplicity but is hindered by its low accuracy and poor stability. Therefore, it is necessary to improve DV-Hop to achieve a competitive performance. However, the comprehensive performance of WSN is limited by computing and storage capabilities of sensor nodes. In this paper, we propose an algorithm with parallel and compact techniques based on Whale Optimization Algorithm (PCWOA) to improve DV-Hop performance. The compact technique saves memory consumption by reducing the original population. The parallel techniques enhance the ability to jump out of local optimization and improve the solution accuracy. The proposed algorithm is tested on CEC2013 benchmark functions and compared with some popular algorithms and compact algorithms. Experimental results show that the improved algorithm achieves competitive results over compared algorithms. Finally, simulation research is conducted to verify the localization performance of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Bai, X., Wang, Z., Sheng, L., & Wang, Z. (2018). Reliable data fusion of hierarchical wireless sensor networks with asynchronous measurement for greenhouse monitoring. IEEE Transactions on Control Systems Technology, 27(3), 1036–1046.

    Article  Google Scholar 

  2. Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang, Z., & Deen, M. J. (2017). Smart homes for elderly healthcare-recent advances and research challenges. Sensors, 17(11), 2496.

    Article  Google Scholar 

  3. Kodam, S., Bharathgoud, N., & Ramachandran, B. (2020). A review on smart wearable devices for soldier safety during battlefield using wsn technology. Materials Today: Proceedings, 33, 4578–4585.

    Google Scholar 

  4. Rajaram, V. & Kumaratharan, N. (2021). Multi-hop optimized routing algorithm and load balanced fuzzy clustering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 12(3), 4281–4289.

    Article  Google Scholar 

  5. Rajasekaran, T. & Anandamurugan, S. (2019). Challenges and applications of wireless sensor networks in smart farming-a survey. In Advances in big data and cloud computing, (pp. 353–361) Springer

  6. Kandris, D., Nakas, C., Vomvas, D., & Koulouras, G. (2020). Applications of wireless sensor networks: an up-to-date survey. Applied System Innovation, 3(1), 14.

    Article  Google Scholar 

  7. Farjamnia, G., Gasimov, Y., Kazimov, C., & Hashemi, M. (2020). A survey of dv-hop localization methods in wireless sensor networks. Journal of Communication Engineering 9(2)

  8. Halder, S. & Ghosal, A. (2016). A survey on mobile anchor assisted localization techniques in wireless sensor networks. Wireless Networks, 22(7), 2317–2336.

    Article  Google Scholar 

  9. Paul, A. K. & Sato, T. (2017). Localization in wireless sensor networks: A survey on algorithms, measurement techniques, applications and challenges. Journal of Sensor and Actuator Networks, 6(4), 24.

    Article  Google Scholar 

  10. Kumar, S. & Lobiyal, D. (2017). Novel dv-hop localization algorithm for wireless sensor networks. Telecommunication Systems, 64(3), 509–524.

    Article  Google Scholar 

  11. Nasir, H. J. A., Ku-Mahamud, K. R., & Kamioka, E. (2017). Ant colony optimization approaches in wireless sensor network: performance evaluation. Journal of Computer Science, 13(6), 153–164.

    Article  Google Scholar 

  12. Shakshuki, E., Elkhail, A. A., Nemer, I., Adam, M., & Sheltami, T. (2019). Comparative study on range free localization algorithms. Procedia Computer Science, 151, 501–510.

    Article  Google Scholar 

  13. Yang, J., Cai, Y., Tang, D., & Liu, Z. (2019). A novel centralized range-free static node localization algorithm with memetic algorithm and lévy flight. Sensors, 19(14), 3242.

    Article  Google Scholar 

  14. Singh, P. R., Abd Elaziz, M., & Xiong, S. (2018). Modified spider monkey optimization based on nelder-mead method for global optimization. Expert Systems with Applications, 110, 264–289.

    Article  Google Scholar 

  15. Hussain, K., Salleh, M. N. M., Cheng, S., & Shi, Y. (2019). Metaheuristic research: a comprehensive survey. Artificial Intelligence Review, 52(4), 2191–2233.

    Article  Google Scholar 

  16. Mirjalili, S. & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  17. Gharehchopogh, F. S. & Gholizadeh, H. (2019). A comprehensive survey: Whale optimization algorithm and its applications. Swarm and Evolutionary Computation, 48, 1–24.

    Article  Google Scholar 

  18. Kaur, G. & Arora, S. (2018). Chaotic whale optimization algorithm. Journal of Computational Design and Engineering, 5(3), 275–284.

    Article  Google Scholar 

  19. Oliva, D., Abd El Aziz, M., & Hassanien, A. E. (2017). Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Applied Energy, 200, 141–154.

    Article  Google Scholar 

  20. Tubishat, M., Abushariah, M. A., Idris, N., & Aljarah, I. (2019). Improved whale optimization algorithm for feature selection in arabic sentiment analysis. Applied Intelligence, 49(5), 1688–1707.

    Article  Google Scholar 

  21. Mostafa Bozorgi, S. & Yazdani, S. (2019). Iwoa: An improved whale optimization algorithm for optimization problems. Journal of Computational Design and Engineering, 6(3), 243–259.

    Article  Google Scholar 

  22. Hussien, A. G., Hassanien, A. E., Houssein, E. H., Amin, M., & Azar, A. T. (2020). New binary whale optimization algorithm for discrete optimization problems. Engineering Optimization, 52(6), 945–959.

    Article  MathSciNet  Google Scholar 

  23. Reddy, K. S., Panwar, L., Panigrahi, B., & Kumar, R. (2019). Binary whale optimization algorithm: a new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets. Engineering Optimization, 51(3), 369–389.

    Article  MathSciNet  Google Scholar 

  24. Abd El Aziz, M., Ewees, A. A., & Hassanien, A. E. (2017). Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 83, 242–256.

    Article  Google Scholar 

  25. Mafarja, M. M. & Mirjalili, S. (2017). Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing, 260, 302–312.

    Article  Google Scholar 

  26. Wang, J., Du, P., Niu, T., & Yang, W. (2017). A novel hybrid system based on a new proposed algorithm-multi-objective whale optimization algorithm for wind speed forecasting. Applied Energy, 208, 344–360.

    Article  Google Scholar 

  27. Abd El Aziz, M., Ewees, A. A., & Hassanien, A. E. (2018). Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications, 77(19), 26135–26172.

    Article  Google Scholar 

  28. Lang, F., Su, J., Ye, Z., Shi, X., & Chen, F. (2019). A wireless sensor network location algorithm based on whale algorithm. In 2019 10th IEEE international conference on intelligent data acquisition and advanced computing systems: technology and applications (IDAACS), (vol. 1, pp. 106–110). IEEE

  29. Daely, P. T. & Shin, S. Y. (2016). Range based wireless node localization using dragonfly algorithm. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), (pp. 1012–1015). IEEE

  30. Miloud, M., Abdellatif, R., & Lorenz, P. (2019). Moth flame optimization algorithm range-based for node localization challenge in decentralized wireless sensor network. International Journal of Distributed Systems and Technologies (IJDST), 10(1), 82–109.

    Article  Google Scholar 

  31. Shakila, R. & Paramasivan, B. (2021). An improved range based localization using whale optimization algorithm in underwater wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 12(6), 6479–6489.

    Article  Google Scholar 

  32. Huang, M. & Yu, B. (2020). Range-based positioning with self-adapting fireworks algorithm for wireless sensor networks. Mathematical Problems in Engineering 2020

  33. Chai, Q.-W., Chu, S.-C., Pan, J.-S., Hu, P., & Zheng, W.-M. (2020). A parallel woa with two communication strategies applied in dv-hop localization method. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–10.

    Article  Google Scholar 

  34. Chen, Y., Li, X., Ding, Y., Xu, J., & Liu, Z. (2018). An improved dv-hop localization algorithm for wireless sensor networks. In 2018 13th IEEE conference on industrial electronics and applications (ICIEA), (pp. 1831–1836). IEEE

  35. Tomic, S. & Mezei, I. (2016). Improvements of dv-hop localization algorithm for wireless sensor networks. Telecommunication Systems, 61(1), 93–106.

    Article  Google Scholar 

  36. Kanwar, V. & Kumar, A. (2021). Dv-hop localization methods for displaced sensor nodes in wireless sensor network using pso. Wireless Networks, 27(1), 91–102.

    Article  Google Scholar 

  37. Abd El Ghafour, M. G., Kamel, S. H., & Abouelseoud, Y. (2021). Improved dv-hop based on squirrel search algorithm for localization in wireless sensor networks. Wireless Networks, 27(4), 2743–2759.

    Article  Google Scholar 

  38. Cui, L., Xu, C., Li, G., Ming, Z., Feng, Y., & Lu, N. (2018). A high accurate localization algorithm with dv-hop and differential evolution for wireless sensor network. Applied Soft Computing, 68, 39–52.

    Article  Google Scholar 

  39. Ouyang, A., Lu, Y., Liu, Y., Wu, M., & Peng, X. (2021). An improved adaptive genetic algorithm based on dv-hop for locating nodes in wireless sensor networks. Neurocomputing

  40. Chen, X. & Zhang, B. (2012). Improved dv-hop node localization algorithm in wireless sensor networks. International Journal of Distributed Sensor Networks, 8(8), 213980.

    Article  Google Scholar 

  41. Cui, Z., Sun, B., Wang, G., Xue, Y., & Chen, J. (2017). A novel oriented cuckoo search algorithm to improve dv-hop performance for cyber-physical systems. Journal of Parallel and Distributed Computing, 103, 42–52.

    Article  Google Scholar 

  42. Li, J., Gao, M., Pan, J.-S., & Chu, S.-C. (2021). A parallel compact cat swarm optimization and its application in dv-hop node localization for wireless sensor network. Wireless Networks, 27(3), 2081–2101.

    Article  Google Scholar 

  43. Niculescu, D. & Nath, B. (2001) Ad hoc positioning system (aps). In GLOBECOM’01. IEEE global telecommunications conference (Cat. No. 01CH37270), (vol. 5, pp. 2926–2931) IEEE

  44. Neri, F., Mininno, E., & Iacca, G. (2013). Compact particle swarm optimization. Information Sciences, 239, 96–121.

    Article  MathSciNet  Google Scholar 

  45. Harik, G. R., Lobo, F. G., & Goldberg, D. E. (1999). The compact genetic algorithm. IEEE Transactions on Evolutionary Computation, 3(4), 287–297.

    Article  Google Scholar 

  46. Mininno, E., Neri, F., Cupertino, F., & Naso, D. (2010). Compact differential evolution. IEEE Transactions on Evolutionary Computation, 15(1), 32–54.

    Article  Google Scholar 

  47. Pan, J.-S., Song, P.-C., Chu, S.-C., & Peng, Y.-J. (2020). Improved compact cuckoo search algorithm applied to location of drone logistics hub. Mathematics, 8(3), 333.

    Article  Google Scholar 

  48. Zhu, M., Chu, S. -C., Yang, Q., Li, W., & Pan, J. -S. (2021). Compact sine cosine algorithm with multigroup and multistrategy for dispatching system of public transit vehicles. Journal of Advanced Transportation 2021

  49. Chu, S.-C., Roddick, J. F., & Pan, J.-S. (2005). A parallel particle swarm optimization algorithm with communication strategies. Journal of Information Science and Engineering, 21(4), 9.

    Google Scholar 

  50. Han, K., Huang, T., & Yin, L. (2021). Quantum parallel multi-layer monte carlo optimization algorithm for controller parameters optimization of doubly-fed induction generator-based wind turbines. Applied Soft Computing, 112, 107813.

    Article  Google Scholar 

  51. Rizk-Allah, R. M., El-Sehiemy, R. A., & Wang, G.-G. (2018). A novel parallel hurricane optimization algorithm for secure emission/economic load dispatch solution. Applied Soft Computing, 63, 206–222.

    Article  Google Scholar 

  52. Liu, Z., Li, Z., Zhu, P., & Chen, W. (2018). A parallel boundary search particle swarm optimization algorithm for constrained optimization problems. Structural and Multidisciplinary Optimization, 58(4), 1505–1522.

    Article  MathSciNet  Google Scholar 

  53. Jamshidi, V., Nekoukar, V., & Refan, M. H. (2021). Real time uav path planning by parallel grey wolf optimization with align coefficient on can bus. Cluster Computing, (pp. 1–15)

  54. Wang, R. -B., Wang, W. -F., Xu, L., Pan, J. -S., Chu, S. -C. (2021). An adaptive parallel arithmetic optimization algorithm for robot path planning. Journal of Advanced Transportation 2021

  55. Liang, J., Qu, B., Suganthan, P., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the cec 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212(34), 281–295.

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruo-Bin Wang or Lin Xu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised for open access cancellation.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RB., Wang, WF., Xu, L. et al. Improved DV-Hop based on parallel and compact whale optimization algorithm for localization in wireless sensor networks. Wireless Netw 28, 3411–3428 (2022). https://doi.org/10.1007/s11276-022-03048-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03048-z

Keywords

Navigation