Skip to main content

Advertisement

Log in

Bursty-Contention Distribution for Energy Efficiency in Large Scale IEEE 802.15.4 Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks are becoming the most popular technology as the paradigm of Internet of Things is emerging recently. Since IEEE 802.15.4, suitable for wireless sensor networks, has the prominent advantages such as the low cost and low energy consumption, it is helpful for variety fields that are sources of Internet of Things. They include healthcare monitoring, industrial application, smart grid, home automation, and many energy-critical application suffered from limited resources. In response, many studies have proposed energy efficient solutions, however, they may waste energy as ever. It is because they do not consider the contentions in multi-coordinator environments then the frequent packet collisions are followed by retransmission which consumed unnecessary energy. In this respect, we proposed a new and simply implementable contention mitigation scheme to enhance the energy efficiency of sensor nodes by reducing the contention degree among neighboring coordinators. In the proposed scheme, the coordinators recognize the network state by exchanging their information with each other. It leads that the coordinators isolate the superframe duration by staggering own beacon transmission. It can alleviate significant contentions among burst packets at the beginning of the superframe. Therefore, the proposed scheme reduces a lot of unnecessary wasted energy in the process of redundant retransmission. Simulation results show that the proposed scheme outperforms existing energy efficient solutions with regard to the network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Gaglio, S., & Lo Re, G. (2014). Advances onto the internet of things: How ontologies make the internet of things meaningful. Berlin: Springer International Publishing.

    Book  Google Scholar 

  2. (2007). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specification for low-rate wireless personal area networks (WPANs), IEEE Std. 802.15.4a.

  3. Park, P., Di Marco, P., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. Parallel and Distributed Systems, IEEE Transactions on, 24(3), 550–564.

    Article  Google Scholar 

  4. Karowski, N., Viana, A. C., & Wolisz, A. (2013). Optimized asynchronous multichannel discovery of IEEE 802.15.4-based wireless personal area networks. Mobile Computing, IEEE Transactions on, 12(10), 1972–1985.

    Article  Google Scholar 

  5. Bashir, F., Baek, W. S., Sthapit, P., Pandey, D., & Pyun, J. Y. (2013). Coordinator assisted passive discovery for mobile end devices in IEEE 802.15.4. In Consumer communications and networking conference (CCNC), 2013 IEEE (pp. 601–604).

  6. Yuan, W., Wang, X., Linnartz, J. P. M., & Niemegeers, I. G. (2013). Coexistence performance of IEEE 802.15.4 wireless sensor networks under IEEE 802.11b/g interference. Wireless Personal Communications, 68(2), 281–302.

    Article  Google Scholar 

  7. Park, P., Fischione, C., & Johansson, K. H. (2013). Modeling and stability analysis of hybrid multiple access in the IEEE 802.15.4 protocol. ACM Transactions on Sensor Networks (TOSN), 9(2), 13.

    Article  Google Scholar 

  8. Pang, A. C., & Tseng, H. W. (2004). Dynamic backoff for wireless personal networks. In Global telecommunications conference (GLOBECOM) IEEE (Vol. 3, pp. 1580–1584).

  9. Lee, B. H., & Wu, H. K. (2009). Study on a delayed backoff algorithm for IEEE 802.15. low-rate wireless personal area networks. Communications, IET, 3(7), 1089–1096.

    Article  Google Scholar 

  10. Ko, J. G., Cho, Y. H., & Kim, H. (2006). Performance evaluation of IEEE 802.15. 4 MAC with different backoff ranges in wireless sensor networks. In Communication systems (ICCS), 10th IEEE singapore international conference on (pp. 1–5).

  11. Dahham, Z., Sali, A., Ali, B. M., & Jahan, M. S. (2012). An efficient CSMA–CA algorithm for IEEE 802.15. 4 wireless sensor networks. In Telecommunication technologies (ISTT), international symposium on (pp. 118–123).

  12. Sheu, S. T., & Shih, Y. Y. (2006). P-Frozen contention strategy (PFCS) for solving collision chain problem in IEEE 802.15. 4 WPANs. In Vehicular technology conference (VTC), 2006-Spring. IEEE 63rd (Vol. 3, pp. 1323–1327).

  13. Tseng, H. W., Pang, A. C., Chen, J., & Kuo, C. F. (2009). An adaptive contention control strategy for ieee 802.15. 4-based wireless sensor networks. Vehicular Technology, IEEE Transactions on, 58(9), 5164–5173.

    Article  Google Scholar 

  14. Sheu, S. T., Shih, Y. Y., & Chen, L. W. (2005). An adaptive interleaving access scheme (IAS) for IEEE 802.15. 4 WPANs. In Vehicular technology conference (VTC), 2005-Spring. IEEE 61st (Vol. 3, pp. 1523–1527).

  15. Cheng, L., Bourgeois, A. G., & Zhang, X. (2007). A new GTS allocation scheme for IEEE 802.15. 4 networks with improved bandwidth utilization. In Communications and information technologies (ISCIT), international symposium on (pp. 1143–1148).

  16. Ding, Y., & Hong, S. H. (2013). CFP scheduling for real-time service and energy efficiency in the industrial applications of IEEE 802.15. 4. Communications and Networks, Journal of, 15(1), 87–101.

    Article  Google Scholar 

  17. Collotta, M., Gentile, L., Pau, G., & Scata, G. (2014). Flexible IEEE 802.15. 4 deadline-aware scheduling for DPCSs using priority-based CSMA–CA. Computers in Industry, 65(8), 1181–1192.

    Article  Google Scholar 

  18. Ko, L. C., & Chou, Z. T. (2007). A novel multi-beacon superframe structure with greedy GTS allocation for IEEE 802.15. 4 wireless pans. In Wireless communications and networking conference (WCNC), IEEE (pp. 2328–2333).

  19. Valero, M., Jung, S. S., Bourgeois, A. G., & Beyah, R. (2012). An incrementally deployable energy efficient 802.15. 4 MAC protocol (DEEP). Ad Hoc Networks, 10(7), 1238–1252.

    Article  Google Scholar 

  20. Cuomo, F., Abbagnale, A., & Cipollone, E. (2013). Cross-layer network formation for energy-efficient IEEE 802.15. 4/ZigBee wireless sensor networks. Ad Hoc Networks, 11(2), 672–686.

    Article  Google Scholar 

  21. Li, X., Bleakley, C. J., & Bober, W. (2012). Enhanced Beacon-Enabled Mode for improved IEEE 802.15. 4 low data rate performance. Wireless Networks, 18(1), 59–74.

    Article  Google Scholar 

  22. Documentation, O. M. (2003). Opnet technologies. Inc. http://www.riverbed.com/products/performance-management-control/opnet.html.

  23. Datasheet, M. (2006). San Jose, CA: Crossbow technology Inc.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Ryun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.R., Park, JH. & Suh, YJ. Bursty-Contention Distribution for Energy Efficiency in Large Scale IEEE 802.15.4 Wireless Sensor Networks. Wireless Pers Commun 84, 1663–1687 (2015). https://doi.org/10.1007/s11277-015-2787-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2787-2

Keywords

Navigation